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Bounded homeomorphisms of the open annulus

David Richeson and Jim Wiseman

Abstract. We prove a generalization of the Poincaré-Birkhoff theorem for
the open annulus showing that if a homeomorphism satisfies a certain twist
condition and the nonwandering set is connected, then there is a fixed point.
Our main focus is the study of bounded homeomorphisms of the open annulus.
We prove a fixed point theorem for bounded homeomorphisms and study the
special case of those homeomorphisms possessing at most one fixed point.
Lastly we use the existence of rational rotation numbers to prove the existence
of periodic orbits.
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4. Fixed points of bounded homeomorphisms 64
5. Periodic orbits and rotation numbers 65
References 67

1. Introduction

A homeomorphism f : X → X is said to be bounded if there is a compact set
which intersects the forward orbit of every point. Since every homeomorphism on
a compact space is bounded, bounded homeomorphisms are interesting only on
noncompact spaces. If f is bounded then there is a forward invariant compact set
which intersects the forward orbit of every point (see Theorem 2). Thus, a bounded
map on a noncompact space behaves in many ways like a map on a compact space.
In particular, many results that are true for maps on compact spaces are also true
for bounded maps on noncompact spaces (e.g., the Lefschetz fixed point theorem).

In this paper we study primarily the dynamics of bounded homeomorphisms
of the open annulus. Intuitively we may view these homeomorphisms as those
having repelling boundary circles. In fact, we will see that the orbit of every point
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intersects an essential, closed, forward invariant annulus. Thus, roughly speaking,
many of the results for homeomorphisms of the closed annulus also hold for bounded
homeomorphisms of the open annulus. Conversely, many of the results that hold
for bounded homeomorphisms of the open annulus also hold for homeomorphisms
of the closed annulus; one may enlarge the closed annulus to an open annulus and
extend the homeomorphism to a bounded homeomorphism of this open annulus.

The most celebrated result for the closed annulus is the Poincaré-Birkhoff the-
orem (also called Poincaré’s last geometric theorem), which states than any area
preserving homeomorphism which twists the boundary components in opposite di-
rections has at least two fixed points. In [Fra88a] Franks gives a topological gen-
eralization for the open annulus; he proves that if every point in an open annulus
is nonwandering and f satisfies a twist condition, then there is a fixed point of
positive index. We prove a further generalization showing that if f satisfies a twist
condition and the nonwandering set is connected then f has a fixed point. Recall
that for a map f : X → X, a point x ∈ X is nonwandering if for every open set
U containing x there exists n > 0 such that fn(U) ∩ U �= ∅. The collection of
nonwandering points is the nonwandering set, denoted Ω(f).

The paper is divided as follows. In Section 2 we present general properties of
bounded homeomorphisms of the annulus. In Section 3 we prove a generalization
of the Poincaré-Birkhoff-Franks theorem for the open annulus. This section ap-
plies to homeomorphisms of the open annulus that need not be bounded. It can
be read independently of the rest of the paper and may be of more general inter-
est. In Section 4 we use this theorem to prove a fixed point theorem for bounded
homeomorphisms of the open annulus. It is interesting to note that a bounded
homeomorphism of a noncompact space can never preserve Lebesgue measure (see
Corollary 3). Thus, we prove a fixed point theorem for a family of maps far from
satisfying the hypotheses of the Poincaré-Birkhoff theorem. Also, we study the
special case of those bounded homeomorphisms having at most one fixed point.
Lastly, in Section 5 we apply the theorem to those bounded homeomorphisms hav-
ing a point with a rational rotation number and prove the existence of a periodic
point with that same rotation number.

In this paper we will let A denote the annulus (R/Z)× I, where I = [0, 1] if A is
the closed annulus, and I = (0, 1) if A is the open annulus. Ã = R × I will denote
the universal cover of the annulus A with π : Ã→ A being the covering projection.
We view Ã as a subset of R

2, thus when we subtract two elements in Ã we obtain
a vector in R

2. The projection onto the first coordinate R
2 → R is given by

(x, y)1 = x. For any set U ⊂ Ã, let U+k denote the set {(x+k, y) ∈ Ã : (x, y) ∈ U}.
If f : A → A is a homeomorphism then there is a lift, f̃ : Ã → Ã satisfying

π ◦ f̃ = f ◦π. Notice that g̃ is another lift of f iff g̃(x, y) = f̃(x, y)+ (k, 0) for some
integer k. For any y ∈ Ã define ρ(y, f̃) to be lim

n→∞(1/n)(f̃
n(y) − y)1 (if this limit

exists). If g̃ is another lift then ρ(y, g̃) = ρ(y, f̃) + k for some integer k. Thus we
may define the rotation number of x = π(y) ∈ A to be ρ(x) = ρ(y, f̃) (mod 1) if this
limit exists. So defined, ρ(x) is independent of the choice of y and f̃ . Unlike the
case of homeomorphisms of the circle, for homeomorphisms of the annulus different
points may have different rotation numbers, and it may happen that the rotation
number for a point does not exist.
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2. Bounded homeomorphisms of the annulus

ln [RW02] the authors introduced the following definitions.

Definition 1. A compact set W is a window for a dynamical system on X if the
forward orbit of every point x ∈ X intersects W . If a dynamical system has a
window then we will say that it is bounded.

We showed that we can characterize bounded dynamical systems in many ways.
The following theorem summarizes some results from [RW02].

Theorem 2. Let f : X → X be a continuous map on a locally compact space X.
Then the following are equivalent:

1. f is bounded.
2. There is a forward invariant window.
3. Given any compact set S ⊂ X there is a window W ⊂ X containing S such

that f(W ) ⊂ IntW .
4. There is a compact set W ⊂ X with the property that ω(x), the omega-limit

set of x, is nonempty and contained in W for all x ∈ X.
5. f has a compact global attractor Λ (i.e., Λ is an attractor with the property

that for every x ∈ X, ω(x) is nonempty and contained in Λ).

Because every bounded map has a compact global attractor it is impossible for it
to preserve Lebesgue measure on a noncompact space. Thus we have the following
corollary.

Corollary 3. Suppose f : X → X is an area preserving map of a noncompact
space X. Then f is not bounded. In particular, if S ⊂ X is any compact set, then
there exists a point x ∈ X such that the forward orbit of x does not intersect S.

Example 4. Consider a convex billiards table (for an introduction to billiards and
billiard maps see [KH95]). Is it possible to find a trajectory with the property
that the angle the ball makes with the wall is always smaller than some arbitrarily
chosen ε? We see that the answer is yes.

Let f : S1 × (0, π) → S1 × (0, π) be the billiards map corresponding to the given
table. It is well-known that f is an area preserving homeomorphism homotopic to
the identity. By Corollary 3, f is not bounded. In particular, there exists a point
(x, θ) whose forward orbit does not intersect the closed annulus S1 × [ε, π − ε].

Thus, for any ε > 0, there exists a trajectory (x0, θ0), (x1, θ1), (x2, θ2), . . . such
that either θk < ε for all k ≥ 0 or π − θk < ε for all k ≥ 0.

Example 5. Suppose there is a convex billiards table with bumpers in the middle
of the table (see Figure 1). Is it possible to find a trajectory of the billiards ball
that never strikes a bumper?

Assume that the bumpers are a finite collection of compact sets not touching
the wall of the billiards table. Consider the billiards map for the table with no
bumpers, f : S1 × (0, π) → S1 × (0, π). Let W ⊂ S1 × (0, π) be the set of points
{(x, θ)} with the property that a ball at position x with trajectory angle θ will
strike a bumper before striking the wall again. Clearly W is a compact set. Thus,
we rephrase the question: Is it possible to find an orbit of f that never intersects
W? By the discussion in Example 4 it is clear that such a trajectory does exist.
Thus, given any compact set of bumpers, there is always a trajectory that avoids
the bumpers.
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Figure 1. The billiards table with two bumpers and the corre-
sponding configuration space

The following proposition follows from more general results in [Gün95, §4], but
under our hypotheses we can give a shorter, more dynamical proof.

Proposition 6. Suppose f : A → A is a bounded homeomorphism of the open
annulus with a compact global attractor Λ ⊂ A. Then the following are true:

1. The inclusion i : Λ → A induces an isomorphism on Čech cohomology, i∗ :
Ȟ∗(A) → Ȟ∗(Λ).

2. Λ is connected.
3. Λ separates the two boundaries of A.

Proof. Let f : A→ A be a bounded homeomorphism of the open annulus A with
compact global attractor Λ. By Theorem 2 there exists a window W such that
Λ ⊂ f(W ) ⊂ IntW . Let ε > 0 be small enough such that Λ ⊂ Aε = [ε, 1 − ε].
For each x ∈ Aε there exists nx > 0 such that fnx(x) ⊂ IntW . There exists
an open set Ux containing x such that fnx(Ux) ⊂ IntW . The collection {Ux}
is an open cover of Aε, thus there exists a finite subcover, {Ux1 , . . . , Uxm}. Let
N = max{nx1 , . . . , nxm}. It follows that f i(Aε) ⊂ IntW for all i ≥ N .

Notice that fN (Aε) separates the two boundaries of A and fN induces an isomor-
phism on cohomology. Also, U = Int(Aε), fN (U), f2N (U), . . . is a nested sequence
of open sets with Λ =

⋂∞
k=0 f

kN (U). Consequently, the inclusion i : Λ → A induces
an isomorphism i∗ : Ȟ∗(A) → Ȟ∗(Λ) and Λ separates the two boundaries of A.
Moreover, since Λ is the intersection of a nested collection of connected open sets,
Λ is itself connected. �

Next we prove a key result that states that all of the interesting dynamics occurs
inside a closed annulus. This result is very useful. It validates our intuition that a
bounded homeomorphism on the open annulus behaves like a homeomorphism on
the closed annulus.

Proposition 7. If f : A → A is a bounded homeomorphism of an open annulus,
then there exists a closed annulus A0 ⊂ A whose boundaries are smooth essential
curves such that f(A0) ⊂ IntA0. Moreover, A0 can be chosen so that the boundary
is as close to Λ or as close to the boundary of A as desired.
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Proof. Let f : A → A be a bounded homeomorphism of the open annulus A =
S1 × (0, 1). By Theorem 2 there exists a compact global attractor Λ ⊂ A. Let
ε > 0 (ε should be small enough that Λ ⊂ S1 × [ε, 1 − ε]). We will construct a
closed annulus A0 satisfying the conclusion of the theorem with the property that
[ε, 1− ε] ⊂ A0. A similar argument can be used to show that we can find A0 with
the boundary close to Λ.

Let A∗ = A ∪ {∗} be the one point compactification of A. It is easy to see
that (Λ, {∗}) is an attractor-repeller pair (in the sense of Conley [Con78]). Let
γ : A∗ → R be a continuous Lyapunov function satisfying γ−1(0) = Λ, γ−1(1) = {∗}
and γ(f(x)) < γ(x) for all x �∈ (Λ∪{∗}) (see [Fra82] for details). For the remainder
of the proof we will restrict γ to be a function from A to R. Let c ∈ (0, 1) be such
that γ−1(c)∩(S1× [ε/2, 1−ε/2]) = ∅. Because γ may not be smooth the set γ−1(c)
could be quite complicated. For any smooth function λ : A→ R (which may not be
a Lyapunov function) sufficiently C0-close to γ and any regular value for λ, c′ ∈ R,
sufficiently close to c, λ−1(c′) ∩ (S1 × [ε, 1− ε]) = ∅ and λ−1(c′) ∩ f(λ−1(c′)) = ∅.
Because c′ is a regular value, λ−1(c′) is the disjoint union of smoothly embedded
circles in A. By Proposition 6, Λ separates the two boundaries of A. Thus there is
at least one circle in λ−1(c′) that separates Λ from the inside boundary and another
circle that separates Λ from the outside boundary. The region bounded by these
two circles is a closed annulus A0 with [ε, 1− ε] ⊂ A0 ⊂ A and f(A0) ⊂ IntA0. �

Corollary 8. If f : A → A is a bounded homeomorphism of the open annulus
homotopic to the identity, then the Lefschetz index of the fixed point set is zero.
In particular, if f has a fixed point of nonzero index, then f has at least two fixed
points.

Proof. Suppose f : A → A is bounded. Then there exists an essential closed
annulus A0 ⊂ A containing the fixed point set with the property that f(A0) ⊂
IntA0. So, the fixed point set of f has Lefschetz index zero. Clearly, if f has a
fixed point of nonzero index, then f has at least two fixed points. �

3. A generalization of the Poincaré-Birkhoff theorem

The classical Poincaré-Birkhoff Theorem states that every area preserving home-
omorphism of the closed annulus that twists the two boundary components in op-
posite directions must have two fixed points ([Poi12], [Bir25], [Bir13]). In the years
since it was proved there have been new proofs and various generalizations (see for
instance [BN77], [Fra88a], [Fra88c], [Car82], [Gui97], [Win88], [AS76]). In [Fra88a]
Franks generalizes this theorem to the open annulus. He weakens the area preserv-
ing hypothesis to the assumption that every point is nonwandering and he weakens
the twist condition to one about positively and negatively returning disks. The
expense of these assumptions is that the homeomorphism may have only one fixed
point, but this fixed point has positive index.

In this section we observe that we may weaken the hypotheses to the assumption
that the nonwandering set, Ω(f), is connected. In this case the homeomorphism
must have a fixed point (now possibly of zero index). Since there are now points
that are not nonwandering we must clarify the twist condition - we will insist that
the positively and negatively returning disks intersect the nonwandering set.
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Definition 9. Let f : A → A be a homeomorphism of an open or closed annulus
and let f̃ : Ã → Ã be a lift of f . An open disk U ⊂ Ã is a positively return-
ing disk if f̃(U) ∩ U = ∅, if π(U) is a disk in A, and if there exist n, k > 0
such that f̃n(U) ∩ (U + k) �= ∅. Define the set Ω+(f) = {y ∈ Ω(f) : y ∈
π(U) for some positively returning disk U}. Similarly, define negatively returning
disks (requiring k < 0) and Ω−(f). Notice that these definitions depend on the
choice of the lift.

Observe that the nonwandering set of f , Ω(f), is equal to the (not necessarily
disjoint) union of Ω+(f), Ω−(f), and π(Ω(f̃)).

We will need the following definition from [Fra88a].

Definition 10. Let f : M → M be a homeomorphism of a surface. A disk chain
for f is a finite collection of embedded open disks, U1, . . . , Un ⊂M satisfying:

1. f(Ui) ∩ Ui = ∅ for all i.
2. For all i, j, either Ui = Uj or Ui ∩ Uj = ∅.
3. For each i < n there exists a positive integer mi such that fmi(Ui)∩Ui+1 �= ∅.

If U1 = Un then we say that U1, . . . , Un is a periodic disk chain.

Franks proves the following generalization of a theorem of Brouwer (see also
[Bro84], [Fat87]).

Theorem 11. [Fra88a] Suppose f : R
2 → R

2 is an orientation preserving home-
omorphism with isolated fixed points. If f has a periodic disk chain, then f has a
fixed point of positive index. In particular, if f has a periodic point, then f has a
fixed point.

The following two lemmas are consequences of this theorem.

Lemma 12. Suppose f : R
2 → R

2 is an orientation preserving homeomorphism.
If Ω(f) �= ∅ then f has a fixed point. If Ω(f) consists of more than just fixed points
and the fixed points are isolated, then f has a fixed point of positive index.

Proof. Let x ∈ Ω(f). If x is not a fixed point, then there exists an open disk
U containing x such that f(U) ∩ U = ∅. Since x is nonwandering there exists
n > 1 such that fn(U) ∩ U �= ∅. Thus U1 = U2 = U is a periodic disk chain. By
Theorem 11 f has a fixed point, and if the fixed points are isolated, then there is
a fixed point of positive index. �

Although not explicitly stated as a result, the following lemma was proved in
[Fra88a].

Lemma 13. Suppose f : A → A is an orientation preserving homeomorphism of
the open annulus that is homotopic to the identity, and let f̃ : Ã → Ã be a lift of
f . If there is a disk U ⊂ Ã that is both positively and negatively returning, then f̃ ,
and hence f , has a fixed point. If the fixed points are isolated, then there is a fixed
point of positive index.

Proof. Suppose U ⊂ Ã is both a positively and negatively returning disk. So, there
exist n1, n2, k1, k2 > 0 such that f̃n1(U)∩ (U + k1) �= ∅ and f̃n2(U)∩ (U − k2) �= ∅.
As shown in [Fra88a], U +k1, U +2k1, U +3k1, . . . , U +k2k1, U +(k1 − 1)k2, . . . ,
U + 2k2, U + k2, U is a periodic disk chain. Thus, by Theorem 11 the conclusions
hold. �
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We now give our main theorem of this section, a generalization of the Poincaré-
Birkhoff-Franks theorem.

Theorem 14. Suppose f : A→ A is an orientation preserving homeomorphism of
the open annulus that is homotopic to the identity, and suppose the nonwandering
set of f , Ω(f), is connected. If there is a lift f̃ : Ã → Ã possessing a positively
returning disk and a negatively returning disk both intersecting π−1(Ω(f)), then f̃ ,
and hence f , has a fixed point.

Proof. Let f and f̃ be as above. For the sake of contradiction, suppose f̃ has no
fixed point. Since Ã is homeomorphic to R

2, Lemma 12 implies that Ω(f̃) = ∅. By
the remark following Definition 9 we know that Ω(f) = Ω+(f)∪Ω−(f). From their
definitions it is easy to see that Ω+(f) and Ω−(f) are open subsets of Ω(f). Since
Ω(f) is connected it follows that Ω+(f) ∩ Ω−(f) �= ∅.

Let x ∈ Ã with π(x) ∈ Ω+(f) ∩ Ω−(f). Then there exists a positively returning
disk, U1 and a negatively returning disk, U2, both containing x. Let U ⊂ U1∩U2 be
an open disk containing x. Since π(x) is nonwandering and since Ω(f̃) = ∅ the disk
U must be either positively or negatively returning. If it is positively returning then
U2 must also be positively returning. Similarly, if U is negatively returning then
U1 must also be negatively returning. Thus either U1 or U2 is both positively and
negatively returning. By Lemma 13 f̃ has a fixed point. This is a contradiction.
Thus f̃ , and hence f , must have a fixed point. �

It is worth making a few comments about the hypotheses of Theorem 14. First
of all, notice that the assumption that Ω(f) is connected is stronger than we need.
If there exist positively and negatively returning disks that intersect the same con-
nected component of π−1(Ω(f)) then we could use the same proof to show the
existence of a fixed point. Secondly, in the definition of positively and negatively
returning disks we assume that k �= 0 for both definitions. One may ask if the
existence of returning disks with k = 0 could be incorporated in Theorem 14. For
instance, if there is a homeomorphism with a positively returning disk and a re-
turning disk with k = 0, is there a fixed point? The answer is yes; in fact, there is
a fixed point even without the positively returning disk. If there is an open disk U
satisfying the definition of the returning disks but with k = 0 then U1 = U2 = U
is a periodic disk chain and thus Theorem 11 guarantees the existence of a fixed
point.

Unlike the Poincaré-Birkhoff theorem, our proof can guarantee only one fixed
point (not two). Also, unlike in Franks’ theorem, this one fixed point may have
index zero. We have the following example showing that this may indeed occur.
The example is based on one from Carter ([Car82]).

Example 15. Consider the flow on Ã shown in Figure 2. Let f̃ : Ã → Ã be the
time-one map of this flow and let f : A→ A be the corresponding map on the open
annulus. So defined, f is a bounded homeomorphism with only one fixed point. By
Corollary 8 this fixed point must have index zero.

Moreover, the next example illustrates that it is necessary for the positively
and negatively returning disks to intersect the lift of the nonwandering set. The
positively and negatively returning disks give us reliable twist information only if
they have some recurrence.
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Figure 2. The lift of a map with one fixed point of index zero

Example 16. Consider the time-one map, f̃ : Ã → Ã, of the flow shown in Fig-
ure 3. Let f : A → A be the corresponding map of the open annulus. The map
f is a bounded homeomorphism with a connected nonwandering set. Moreover, f̃
possesses positively and negatively returning disks. Yet f has no fixed point.

Figure 3. A map with positively and negatively returning disks
and no fixed points

In Example 16 we see that the fact that a point is in a negatively returning disk
does not necessarily imply that the points toward which it tends are in negatively
returning disks themselves. However, the converse is true, as the next proposition
shows.

Proposition 17. Let f : A→ A be a homeomorphism of an open or closed annulus
and let f̃ : Ã → Ã be a lift of f . Let x ∈ A. If ω(x) ∩ Ω+(f) �= ∅ then there is a
positively returning disk containing y ∈ π−1(x). If ω(x) ∩ Ω−(f) �= ∅ then there is
a negatively returning disk containing y ∈ π−1(x).

Proof. Suppose ω(x) ∩ Ω+(f) �= ∅ and y ∈ π−1(x). Let z ∈ ω(x) ∩ Ω+(f). Then
there exists a positively returning disk U such that z is in π(U). Also, there exists
n > 0 such that fn(x) ∈ π(U). Without loss of generality we may assume that
f̃n(y) ∈ U (if not then translate U by the appropriate integer amount). Since U is
a positively returning disk then so is V = f̃−n(U). Moreover, V contains y. The
case for negatively returning disks is proved similarly. �

In Examples 15 and 16 we see that Ω+(f) and Ω−(f) are disjoint sets. Exam-
ple 18 shows that this need not be the case in general. Moreover, we will see that
for a point x with π(x) ∈ Ω+(f) ∩ Ω−(f), there may be positively and negatively
returning disks containing x that are arbitrarily small.
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Example 18. We begin with a rectangle N and create a triple horseshoe by wrap-
ping N around the annulus twice (see Figure 4). Extend f to a homeomorphism on
all of A. If desired we may make f bounded. Choose a lift f̃ as shown in Figure 4.

N

f (N)

f (U)~
U

N

N0 N1 N2

V

Figure 4. A map with Ω+(f) ∩ Ω−(f) �= ∅

Inside this triple horseshoe is an invariant set S on which f is conjugate to the
full three-shift Σ3. In particular, let N0, N1, N2 ⊂ N be the three components of
N∩f−1(N). Then the conjugacy g : S → Σ3 is given by g(x) = (. . . , a−1, a0, a1, . . . )
where ai = j if f i(x) ∈ Nj . Notice that S ⊂ Ω(f). Also observe that for points in
the lift, a 0 in the itinerary corresponds to movement left and a 2 corresponds to
movement right. So, for instance, if y ∈ S has an itinerary with a finite number of
0s and 1s and x ∈ π−1(y), then (f̃n(x))1 will tend to positive infinity.

Let y ∈ S be the fixed point with itinerary (. . . , 0, 0, 0, . . . ) and let x ∈ π−1(y).
We claim that y ∈ Ω+(f) ∩ Ω−(f) and moreover, every sufficiently small disk con-
taining x is both positively and negatively returning. Let V ⊂ N be the disk
Int(N0 ∩ f(N0)) and let U ⊂ Ã be the component of π−1(V ) containing x. Exam-
ining the dynamics on Ã (see Figure 4) we see that U is negatively returning (with
n = 1, k = −1) and positively returning (with n = 5, k = 1).

Moreover, we claim that any disk W ⊂ U containing x is both positively return-
ing and negatively returning. Let y′ = g−1(. . . , a0, a1, . . . ) with ai = 0 for i < N
and i ≥ 3N and ai = 2 for N ≤ i < 3N . For N large enough y′, f4N−1(y′) ∈ π(W ).
Let x′ ∈ W ∩ π−1(y′). So defined, f̃4N−1(x′) ∈ W + 1 (according to the itinerary
x′ moves left 2N − 1 times and right 2N times). Thus, W is positively returning
with n = 4N − 1 and k = 1. It is clear that W is negatively returning with n = 1,
k = −1.
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4. Fixed points of bounded homeomorphisms

In this section we investigate fixed points of bounded homeomorphisms of the
open annulus. We begin by applying Theorem 14 to this class of homeomorphisms.
We then describe the behavior of bounded homeomorphisms possessing one or fewer
fixed points.

Theorem 19. Suppose f : A → A is a bounded, orientation-preserving home-
omorphism of an open annulus that is homotopic to the identity, and suppose
Ω(f) is connected. If there is a lift of f , f̃ : Ã → Ã, and points x, y ∈ Ã with
lim

n→∞(f̃
n(x))1 = −∞ and lim

n→∞(f̃
n(y))1 = ∞, then f̃ , and hence f , has a fixed

point.

Proof. Suppose x, y ∈ Ã with lim
n→∞(f̃

n(x))1 = −∞ and lim
n→∞(f̃

n(y))1 = ∞. Since

f is bounded, ω(π(y)) �= ∅. Let z ∈ ω(π(y)), then let y′ ∈ π−1(z). If y′ is a fixed
point then so is z, and we’re done. So assume that y′ is not fixed. Let U ⊂ Ã
be any disk containing y′ small enough that f̃(U) ∩ U = ∅ and π(U) ⊂ A is a
disk. Since z is nonwandering there are infinitely many positive integers n and
corresponding integers k = k(n) such that f̃n(U) ∩ (U + k) �= ∅. Since z ∈ ω(π(y))
and lim

n→∞(f̃
n(y))1 = ∞, then for n large enough we can guarantee that k > 0.

Thus, U is a positively returning disk with U ∩ π−1(Ω(f)) �= ∅. Similarly, since
lim

n→∞(f̃
n(x))1 = −∞ there is a negatively returning disk intersecting π−1(Ω(f)).

By Theorem 14 f has a fixed point. �

In [Car82] Carter considers the case where g is a twist homeomorphism of the
closed annulus A with at most one fixed point in the interior. She proves that there
is an essential simple closed curve C in the interior which intersects its image in
at most one point. As we saw in Proposition 7, if g is a bounded homeomorphism
of the open annulus, then there are essential simple closed curves which do not
intersect their images. Thus it is not clear how one would generalize her theorem
for bounded homeomorphisms. We do find that bounded homeomorphisms having
having at most one fixed point do have special properties. We present them in
Theorem 20. In particular, we see that if f has at most one fixed point then the
bad behavior found in Example 18 cannot occur.

We state the following theorem for bounded homeomorphisms of the open or
closed annulus. Recall that for the closed annulus every homeomorphism is bounded;
thus for the closed annulus, the boundedness hypothesis is redundant.

Theorem 20. Suppose f : A → A is an orientation-preserving, bounded home-
omorphism of the open or closed annulus that is homotopic to the identity, and
suppose f has at most one fixed point. Let f̃ : Ã→ Ã be a lift of f . Then, for each
x ∈ Ã one of the following is true:

1. lim
n→∞(f̃

n(x))1 = ∞,

2. lim
n→∞(f̃

n(x))1 = −∞, or

3. lim
n→∞ f̃

n(x) = p for some fixed point p of f̃ .
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Moreover, if Fix(f̃) = ∅ and Ω(f) is connected, then lim
n→∞(f̃

n(x))1 = ∞ for all

x ∈ Ã or lim
n→∞(f̃

n(x))1 = −∞ for all x ∈ Ã.

Proof. First, assume that A is the open annulus. Suppose f has at most one fixed
point. Let x ∈ Ã. Suppose that ω(x) is not empty and consists of more than a
single fixed point. Notice that since the set of fixed points of f̃ is either empty
or discrete (all being integer translates of one another) ω(x) can’t consist of only
fixed points. In particular, since ω(x) ⊂ Ω(f̃), Ω(f̃) must consist of more than
just fixed points. Lemma 12 states that f̃ has a fixed point of positive index. But
Corollary 8 states that the Lefschetz index of Fix(f̃) is zero; this is a contradiction.
Thus ω(x) = ∅ or lim

n→∞ f̃
n(x) = p for some fixed point p of f̃ .

Now suppose ω(x) = ∅. Since f is bounded Proposition 7 states that there
is an essential closed annulus A0 ⊂ A that is a forward invariant window for f .
Let Ã0 = π−1(A0). Notice that for all n sufficiently large f̃n(x) ∈ Ã0. Since we
are concerned with the long-term behavior of x, we may assume without loss of
generality that x ∈ Ã0. Since ω(x) = ∅, for any M > 0 there exists NM > 0 such
that |(f̃n(x) − x)1| > M for all n > NM . Thus the orbit of x tends to infinity,
negative infinity, or conceivably both. We will show that the last possibility will
never occur. Since A0 is compact there is an M ′ > 0 such that |(f̃(y)− y)1| < 2M ′

for all y ∈ Ã0. Thus, (f̃n(x)−x)1 > M ′ for all n > NM ′ or (f̃n(x)−x)1 < −M ′ for
all n > NM ′ . So, it must be the case that lim

n→∞(f̃
n(x))1 = ∞ or lim

n→∞(f̃
n(x))1 =

−∞.
Lastly, suppose Fix(f̃) = ∅ and Ω(f) is connected. From above we see that for

x ∈ Ã either lim
n→∞(f̃

n(x))1 = ∞ or lim
n→∞(f̃

n(x))1 = −∞. But, by Theorem 19 we
know that both cannot occur.

Now, suppose A is the closed annulus. Then let A′ = S1 × (−ε, 1 + ε). Extend
f to a bounded homeomorphism on A′ as follows. If (x, y) ∈ S1 × (1, 1 + ε), then
f(x, y) = f(x, 1) + (0, (y − 1)/2). Similarly define f on S1 × (−ε, 0). Applying the
result for the open annulus we arrive at the desired conclusions. �

5. Periodic orbits and rotation numbers

As indicated in the introduction, bounded homeomorphisms on noncompact
spaces behave in many ways like homeomorphisms on compact spaces. In [Fra88b]
Franks proves the following result for homeomorphisms of the closed annulus ho-
motopic to the identity: if a point has a given rational rotation number, then there
is a periodic point with that same rotation number. The result clearly fails for
homeomorphisms of the open annulus. However, it does hold for bounded homeo-
morphisms.

Below we have a theorem that applies to the open and closed annulus. As
mentioned above, the result for the closed annulus was proved by Franks (Corollary
2.5 in [Fra88b]) and Handel [Han]. The proof is modeled on Franks’. However,
the results leading up to his proof were different from those presented here (his
arguments used the idea of chain recurrence), thus we state both results. In the
next two theorems we consider bounded homeomorphisms of the open and closed



66 David Richeson and Jim Wiseman

annulus. Recall that for the closed annulus boundedness is a redundant notion;
every homeomorphism of the closed annulus is bounded.

Theorem 21. Suppose f : A → A is an orientation-preserving, bounded home-
omorphism of the open or closed annulus that is homotopic to the identity. If
f̃ : Ã→ Ã is a lift of f , and for some x ∈ Ã

lim inf
1
n
(f̃n(x)− x)1 ≤ p

q
≤ lim sup

1
n
(f̃n(x)− x)1,

then f has a periodic point with rotation number p/q.

Proof. Suppose A is the open annulus. Let x ∈ Ã be a point satisfying the
hypotheses of the theorem. First, assume that p = 0. We will show that f̃ has a
fixed point. For the sake of contradiction, assume that f̃ has no fixed points. Then
by Theorem 20 lim(f̃n(y) − y)1 = ±∞ for all y ∈ Ã. Without loss of generality,
assume that lim(f̃n(x)−x)1 = ∞. Since f is bounded ω(π(x)) �= ∅; denote this set
Λ, and let Λ̃ = π−1(Λ).

We first show that lim(f̃n(y))1 = ∞ for every y in Λ̃. Again, Theorem 20 says
that lim(f̃n(y))1 = ±∞, so assume for the sake of contradiction that it is −∞
for some y. Then any point y0 in π−1(ω(π(y))) lies in a negatively returning disk
(since iterates of π(y) return arbitrarily close to π(y0)). Therefore y itself lies in a
negatively returning disk U , by Proposition 17. Since y ∈ Λ̃ and lim(f̃n(x))1 = ∞,
U is also positively returning, so by Lemma 13 f̃ has a fixed point. This contradicts
our assumption, so lim(f̃n(y))1 = ∞ for every y in Λ̃.

We claim that points in Λ̃ may move only a bounded negative distance. That
is, there is a K > 0 such that (f̃n(y) − y)1 > −K for all y ∈ Λ̃ and n ∈ Z

+.
To prove this, define Λ̃[0,1] to be the set {x ∈ Λ̃ : 0 ≤ (x)1 ≤ 1} and Λ̃+ to
be the set {x ∈ Λ̃ : (x)1 > 0}. For each x ∈ Λ̃[0,1], there is an integer nx > 0
such that f̃nx(x) ∈ Λ̃+. This same nx works for points in some neighborhood of
x, so by compactness there is an M > 0 such that for each x ∈ Λ̃[0,1], the set
{x}∪{f̃(x)} · · · ∪ {f̃M (x)} intersects Λ̃+. Then the set Λ̃+ ∪ f̃(Λ̃+)∪ · · · ∪ f̃M (Λ̃+)
is forward-invariant. Therefore no point in Λ̃[0,1] ever moves farther left than K ′ =
min{(x)1 : x ∈ Λ̃[0,1]∪ f̃(Λ̃[0,1])∪· · ·∪ f̃M (Λ̃[0,1])}, and we may take K = −(K ′−1).

Next, we claim that there is an N > 0 such that (f̃N (y)− y)1 > 2 for all y ∈ Λ̃.
Let

Un = {π(y) ∈ Λ : (f̃n(y)− y)1 > K + 2},

and note that this implies (f̃m(y) − y)1 > 2 for all m ≥ n and all y ∈ π−1(Un).
Notice that Un is an open subset of Λ. Moreover, since lim(f̃n(y) − y)1 = ∞ for
all y ∈ Λ̃, {Un}n>0 is an open cover of Λ with Un ⊂ Um when m > n. Since Λ is
compact, there is an N > 0 such that Λ = UN . This N has the desired property.

Since the orbit of π(x) limits upon Λ, for all k sufficiently large (f̃N+k(x) −
f̃k(x))1 > 1. A telescoping sum shows that

(f̃nN+k0(x)− f̃k0(x))1 > n
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for some k0 > 0. Thus,

lim inf
1
n
(f̃n(x)− x)1 > 1

N
,

a contradiction. Thus f̃ has a fixed point.
Now, assume that p/q �= 0. Let T : Ã→ Ã be the translation T (x, y) = (x+1, y).

Let g̃ = T−p ◦ f̃q. So defined, g̃ is a lift of fq. Moreover, y ∈ Ã is a fixed point of
g̃ iff π(y) is a periodic point of f with rotation number p/q. Lastly, observe that

lim inf
1
n
(g̃n(x)− x)1 ≤ 0 ≤ lim sup

1
n
(g̃n(x)− x)1.

Thus, by the argument above g̃ has a fixed point, and f has a periodic point with
rotation number p/q.

Now, suppose A is the closed annulus. As in the proof of Theorem 20 we may
extend f to a bounded homeomorphism of the open annulus A′ = S1 × (−ε, 1 + ε)
in such a way that no new periodic points are created. Applying the result for the
open annulus we find the prescribed periodic point in A. �

Thus, obviously, if a point has a rational rotation number then there is a pe-
riodic point with the same rotation number. In fact, we may make the following
conclusion. The result for the closed annulus was proved by Franks ([Fra88b]).

Corollary 22. Suppose f : A → A is an orientation-preserving, bounded homeo-
morphism of the open or closed annulus that is homotopic to the identity. If among
all the periodic points there are only a finite number of periods, then every point of
A has a rotation number.
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[AS76] H. Abelson and C. Stanton, Poincaré’s geometric theorem for flows, J. Differential
Geom., 11(1) (1976), 129–131, MR 54 #3765, Zbl 0328.58014.
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Math. Soc., 269(1) (1982), 285–299, MR 84h:54041, Zbl 0507.55002.

[Con78] C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference
Series in Mathematics, 38, American Mathematical Society, Providence, R.I., 1978,
MR 80c:58009, Zbl 0397.34056.

[Fat87] A. Fathi, An orbit closing proof of Brouwer’s lemma on translation arcs, Enseign. Math.
(2), 33(3-4) (1987), 315–322, MR 89d:55004, Zbl 0649.54022.

[Fra82] J. Franks, Homology and dynamical systems, CBMS Regional Conference Series in Math-
ematics, 49, American Mathematical Society, Providence, R. I., 1982, MR 84f:58067,
Zbl 0497.58018.

[Fra88a] J. Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math. (2), 128(1)
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