A First Look at Simulating
Motion

In the last activity, we managed to move objects on the screen by
repeatedly evaluating the position function, x(t), for successively
larger time values. This iterative evaluation of the function was done
in the WHILE loop.

We were also able to graph the values in a position-time graph.

This approach was quite powerful already, but it also limits what
we can do. For example, it would already be quite difficult to make
an object move forward, stop for a while and then move backward
using this approach, as you probably discovered in the last chapter.
Furthermore, this approach also imposes solutions rather than nu-
merically finding them, thus sort of bypassing the underlying phys-
ical laws, as we will see later.

For these reasons, we would like to move from a mere evaluation of
a function to an actual simulation of a physical process in real time.
Today, we will take our first step in the direction of a true numerical
simulation of physics.

4.1 The Physics

Let’s start with a piece of physics that you already know - the for-
mula for average velocity in one dimension — and then translate it

to a statement a computer can understand. So, average velocity is
defined as,
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Vavg = At At

(4.1)

In words, the average velocity over a time interval of motion is de-
fined as the displacement divided by the elapsed time.

As a general rule, computers cannot handle continuous motion.
Therefore, in order to make any simulation of real physical motion
look realistic, we will have to “chop up” the true continuous motion
into many, many frames separated by very small time intervals. The
situation is not unlike watching a movie where we perceive continu-
ous motion when in reality we are being exposed to a rapid sequence
of still images.

The upshot is that we will want to make our time interval At really
small in Equation (4.1). Over the course of this small time interval
we would not expect the velocity to change very much, so a pretty
good assumption is that it is simply constant over this interval. This
also means that the average velocity is just the same as this con-
stant velocity and we can drop the subscript “avg”. If we then solve
Equation (4.1) for x2, we get:

To = x1 + vAt (4.2)

Here we assumed that At was sufficiently small, which allowed us
to omit the subscript avg.

Let’s describe Equation (4.2) in words: Between two frames sepa-
rated in time by At, we can compute the position of the object in
the new frame, =9, based on the position in the current frame, x1,
and the velocity of the object, v. We simply have to add vAt to z;.

Now all we have to do is repeat the step in Equation (4.2) over and
over again. Every time we advance forward in time by the small
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amount At. And every time, we replace the starting position x; by
the ending position 9 of the previous step. In other words, we want
to use Equation (4.1) recursively in order to evolve the position of
our object forward in time, step by step.

So far, we have assumed that v in Equation (4.2) would remain con-
stant in each successive step, but this does not have to be the case.
In general, we can allow the velocity v to get updated as well with
each new iteration. We will see some straightforward examples in
the section 4.3. The procedure we have described here is also known
in the numerical analysis community as the Euler Method.!

4.2 The Basic Code

Now that we a taste of the physics involved, how do we translate
that idea into code a computer can interpret? Let’s take a look at
the following few lines of VPython code - see Figure 4.2.

We see that the core of the program is contained in the WHILE loop,
as before. Let’s start our discussion with the central line, namely
LINE 22:

r=x+vx*xdt (4.3)

As a mathematical statement this is, of course, nonsense. But we
should not interpret the equal symbol in the mathematical sense. It
is not an equality. It is an ASSIGNMENT. “z” is a variable that holds
a certain number, and whenever you see “z = something” this signals
that the value stored in the variable “x” is about to be updated.

So Equation (4.3) should be read in two parts. The expression to

'Named after the mathematician and physicist Leonhard Euler.
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GlowScript 2.7 VPython|
i
3 -
4 gl=praph{width=488, height=258)
5 xDots=gdots{color=coler.green, graph=gl)
7 1 L
8 obj=sphere{pos=vector(-1,2,8),radius=0.1,color=color,red)
' 1
11 t=8
12 dit=8.85
13 x=-3.8
14 v=2.8
16 I
17 while t<3:
18 rate{1@)
19 ohj.pos=vector(x,2,2)
20 xbots.plot{t,x)
7 . - ha
22 x=x+tvidi
#3 t=t+dt

Figure 4.1: The basic code

the right of the equal sign is computed first based on the current
value of z. Secondly, the “z = ” part then assigns the result of that
computation to the variable z. The upshot is that x is updated and
now holds the new value.

Thus, if we had to translate the statement in Equation (4.3) into a
mathematical equation, we would say:

r9 = x1 + VAL,

where x5 is the new value and x; is the old value of position. Note
also that “dt” in Eq. 4.3 should not be interpreted as a differential in
the Calculus sense but represents a small time interval, defined in
LINE 12 as 0.05.

We are now in a position to discuss the entire code. Line 4 and 5
set up a position graph (time on the horizontal axis, position on the
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vertical axis). LINE 8 defines the object we want to move around in
space — a red sphere of radius 0.1. Lines 11-13 set the initial condi-
tions as well as the size of the small time interval, dt. Within the
WHILE look, we keep updating the variable x and then, using this,
to update the position of the object using the command in LINE 19:
obj.pos=vector(x,0,0). Here obj was defined as the sphere, and pos
is an attribute of the sphere, namely the position (i.e. location) of the
sphere’s center. This position is a three-dimensional vector which
we create using the vector command. Finally, the xDots.plot(t,x)
command in LINE 20 appends the newest data point to our position
graph.

The last line, Line 23, updates the time variable. This is necessary in
order to test the conditional of the WHILE loop (t<3), as well as for
the purpose of plotting the position (and velocity) graph. It does not,
however, come into play in calculating the position of the object — an
important difference from the previous approach of simply plotting
the function x(t).

4.3 Exercises

1. « Run this program to make sure it works. Describe what
you see.

« Modify the code so that during the first second, the ball is
moving to the right as before, but for the second second
it stays still, and during the third second, it returns to
the original starting point. Also have VPython generate
the corresponding position-time graph.

Hint: Think about how you could use if-then statements
to accomplish this task.
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« Discuss with your group how you would have to modify

the code printed above to make the object accelerate to
the right at constant acceleration. Hint: Think about the

(P>

role of "v”!

Once you verify that the code really does produce an
accelerating object on the screen, let’s have VPython
generate the position-time graph, as well as the velocity-
time graph. Ideally, the data would be displayed in two
separate graphs. You may have to duplicate and slightly
modify some of the lines already appearing in the sam-
ple code.

Take a screenshot of the code, as well as the two graphs
to include in your lab notebook.

Now that you have the position-time graph, verify that
it agrees with the first kinematics equation: x(t) = zo +
vot + %atz. You can do this, for instance, by evaluating
the formula at a particular time (for the initial velocity
and the acceleration that appears in your code). Does
this point lie on the the graph?
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