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This work focuses on the production of both stationary and traveling intrinsic localized modes �ILMs�, also
known as discrete breathers, in two closely related electrical lattices; we demonstrate experimentally that the
interplay between these two ILM types can be utilized for the purpose of spatial control. We describe a novel
mechanism that is responsible for the motion of driven ILMs in this system, and quantify this effect by
modeling in some detail the electrical components comprising the lattice.

DOI: 10.1103/PhysRevE.81.046605 PACS number�s�: 05.45.Yv, 63.20.Pw, 47.54.De, 84.30.�r

I. INTRODUCTION

Intrinsic localized modes �ILMs�, also known as discrete
breathers, have by now been observed in a diverse collection
of physical systems �1�. The presence of nonlinearity and
spatial discreteness have served as the fundamental ingredi-
ents shared by the different applications. To exemplify the
diversity, these systems have ranged from solid-state crystals
�2–5� to micromechanical devices �6�, Josephson junction
arrays �7–9� and photonic crystals �10�. Recently, some stud-
ies have attempted to go beyond the mere experimental iden-
tification or even production of localized energy in various
lattices to its direct manipulation and experimental control
�2,6,11–13�, a subject which has also been of interest to nu-
merous theoretical studies �14�. In many of these studies the
focus has been on protocols designed to move ILMs from
one lattice site to another, as well as to control the interaction
between two such localized modes.

In this paper, we present a straightforward method of
achieving substantial spatial control of ILMs in the same
electrical lattice in which ILMs have been observed recently
�17,18�. As we will show, the method utilizes an idiosyn-
chracy of this system: there exist two closely related versions
of the electrical lattice which admit, respectively �and exclu-
sively�, traveling or stationary ILMs. We then demonstrate
that by locally switching between these two variants of the
lattice, it is possible to capture a traveling ILM at any chosen
lattice site, as well as to release it �into a traveling state� from
that site.

The observation that of the two closely related versions of
the lattice only one supports traveling ILMs, is key to ex-
plaining the origins of ILM motion in this system. We outline
the mechanism by which the ILM “propels itself” in this
system—one that is different from those reported in the lit-
erature for other systems. As we will see, the relevant mecha-
nism �when present� enforces traveling within the electrical
lattice, as the breather creates its own causes for motion. To
quantify the mechanism, we model the components compris-
ing the lattice in some detail and compare the resulting nu-
merical predictions to experimental results. Along these
lines, we also explore experimentally the formation of trav-
eling ILMs in some detail and compare and contrast the ini-

tial modulational instability and subsequent pattern selection
process that unfolds in the respective damped-driven lattices.

Our presentation will be structured as follows. In Sec. II,
we will present the experimental system and the modeling
approach/understanding toward its fundamental building
block �i.e., the single element of the lattice�. Then in Sec. III,
upon explaining the fundamental difference between the two
lattices, we will explore experimentally their features, in-
cluding the outcome of the modulational instability, the seed-
ing, capture, and release of ILMs and how they can occur in
this system. Finally, in Sec. IV, we will summarize our find-
ings and present our conclusions, as well as some directions
for future study.

II. EXPERIMENTAL SYSTEM AND UNIT CELL

A. Experimental lattice description

Figure 1 shows a schematic of the two electrical lattices
under investigation. They are very similar—both are one-
dimensional bi-inductance lattices which act as band-pass
filters. In the actual experiment, the lattices consist of 32
nodes and are fashioned into rings �so as to implement peri-
odic boundary conditions�, with the two inductances being
L1=680 �H and L2=330 �H. The only difference between

FIG. 1. The electrical lattice circuit �a� without and �b� with the
blocking capacitors.
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them are the additional capacitors which are present between
the diodes and the inductor line in Fig. 1�b�, whereas in Fig.
1�a� those capacitors are removed. The original purpose of
this capacitor �15,16� was to block dc current from flowing
through the resistor and inductor to the ground in the case
where the driver contained a dc voltage offset. dc bias volt-
ages were used in these previous studies for the purpose of
biasing the diodes in order to vary their effective capaci-
tance. The blocking capacitors then become necessary and
their capacitance was chosen to be large so as not to modify
the effective capacitance of the diodes themselves. In previ-
ous studies for instance �17,18�, blocking capacitors of 1 �F
were chosen, whereas the diodes had an effective capaci-
tance of around 800 pF �at zero bias voltage�—i.e., a relative
capacitance ratio of over a 1000. For this reason, one could
naively surmise that the blocking capacitor would have no
effect on the ensuing lattice dynamics.

As we will see, this expectation is only correct in the
linear and weakly nonlinear regime, but does not hold in the
fully nonlinear regime. When driven sinusoidally in time and
homogeneously in space, lattice A �in Fig. 1� supports only
stationary ILMs, whereas lattice B supports only traveling
ones. Thus, we observe that when the blocking capacitors are
removed from the lattice, the ILMs that are supported in the
steady state by a continuous-wave driver spontaneously
transform themselves from traveling to stationary ones. This
will be the basis for our ability to controllably capture and
release the ILMs in what follows.

B. Unit cell model, computation and comparison with
experiments

In order to investigate the role of the blocking capacitor
further, let us examine in detail a single unit cell of each
electrical lattice. Figure 2�a� shows a schematic of the unit-
cell circuit. The driver here is a sweep generator and the
response of the circuit is measured by an oscilloscope at
point A. The resulting frequency spectra are displayed in
Figs. 2�b� and 2�c�. In Fig. 2�b�, the switch is set to position
B such that the capacitor is by-passed, and in Fig. 2�c� the
switch is set to position C such that the capacitor is included.
The x axis displays frequency, and the y axis the most posi-
tive and negative voltage reached by an oscillation at that
frequency. We see that in the linear and weakly nonlinear
regime, the two responses are identical. However, as the
driver amplitude is raised further, the spectra diverge signifi-
cantly. The circuit without the capacitor exhibits an abrupt
transition whose position depends on the direction of the
frequency scan, as is characteristic of nonlinear oscillators.
For clarity, only the down scans are displayed in the figure.

The circuit with the blocking capacitor exhibits a number
of such transitions finely spaced within a certain frequency
interval. The origin of these transitions is revealed by time
profiles at isolated frequencies within this interval. We ob-
serve a periodic switching between a high-amplitiude and a
low-amplitude state at long periods on the order of 10 ms.
The physical mechanism responsible for this low-frequency
oscillation or switching will be identified in the next section;
it is essential for the motion of ILMs in this system.

Figure 2 also depicts a theoretical prediction of the single-
cell response which matches the experimental scans reason-
ably well. The asymmetry in the voltage envelope is seen in
both the model and experiment and is a consequence of the
current-voltage relationship of the diode �as will be ex-
plained below�. Careful inspection of the theoretical curve
reveals that in the case of Vd=2 V and in the presence of the
blocking capacitor, there exists an interval of frequencies
where no solution �neither small nor large amplitude oscilla-
tion� is stable.

The main point �captured both by the experimental and
numerical traces� is that the blocking capacitor does not alter
the linear and weakly nonlinear properties of the lattice, but
that it certainly does affect the strongly nonlinear regime in
the dynamics.

Let us briefly outline the model used to describe the
single-cell behavior. It is well known that diodes act as rec-
tifiers, given by an asymmetrical current response of the
kind,

I�t� = Is�1 − Ae−�V�t�� . �1�

Experimentally, it can be found in our setting that Is=1.71
�10−11 A, A=2�10−3, and �=37 V−1.
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FIG. 2. �Color online� Testing the response of a unit cell at
driver amplitude of 1 and 2 V. �a� Schematic of unit cell setup, �b�
spectrum without, and �c� with the blocking capacitors. In Figs. 2�b�
and 2�c�, black points correspond to experimental data, continuous
lines to stable solutions predicted by the theoretical model, and
dashed lines to unstable solutions predicted by the theoretical
model. In all cases R=10 k�, Cf =1 �F, L1=680 �H, L2

=330 �H, r=16 k�, and C�0�=832 pF.
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This current rectification is still operative into the radio-
frequency regime, where the total current at the diode now
also contains a capacitive contribution, I=C�V� dV

dt . It is evi-
dent that this contribution cannot give rise to a dc current
offset, IDC= 1

T�0
TI�t�dt. In fact, we have experimentally veri-

fied that for radio frequency driving, IDC through the diode
�as measured via a small series resistor� is accounted for by
Eq. �1�. Thus, the correct model of the varactor diodes is an
ideal diode �described by I�V�� in parallel with a nonlinear
capacitor �described by C�V��.

If we consider that the driving source is given by Vd
=A cos��t�, and using basic circuit equations, we can obtain
a simple model for the unit cell without the blocking capaci-
tor. This model is described by the equation:

C�V�
d2V

dt2 = −
dI�V�

dV

dV

dt
−

dC�V�
dV

�dV

dt
�2

−
�R + r�

Rr

dV

dt
−

V

L

−
A�

R
sin��t� , �2�

where V is the voltage across the diode. Here L is the effec-
tive inductance of the two inductors in parallel, and the pa-
rameter r represent the residual ohmic resistance of the cir-
cuit, the value of which must be high enough to render its
effect small everywhere except near resonance. This resis-
tance is necessary to reproduce the experimental spectra
quantitatively and its value is on the order of 20 k�.

The equations for the unit cell with the blocking capacitor
are slightly more complicated, as we have to distinguish be-
tween the voltage across the diode, VD, and the voltage
across the blocking capacitor, Vf

C�V�
d2VD

dt2 = −
dI�VD�

dVD

dVD

dt
−

dC�VD�
dVD

�dVD

dt
�2

−
1

R

dVD

dt

+ Cf

dVf
2

dt2 −
A�

R
sin��t� ,

Cf
d2Vf

dt2 = −
1

L
�VD + Vf� −

1

r
�dVD

dt
+

dVf

dt
� . �3�

The diode capacitance has been measured experimentally
and can be reasonably approximated over the full range of
voltages �−0.7 V�V�8.0 V� by the double-exponential fit

C�V� = C0 + Ae−�1V + Be−�2V, �4�

where C0=21 pF, A=652 pF, B=27 pF, �1=0.34 V−1, and
�2=9.35 V−1. For positive voltages alone, a single exponen-
tial decay with amplitude of 810 pF and decay constant
0.53 V−1 is more accurate but fails for negative voltages
�where the slope is much steeper�.

III. FULL LATTICE RESULTS AND ANALYSIS

A. Static ILM distortions and the role of the blocking capacitor

Let us examine the voltages across and currents through
the diode, first in the absence of the blocking capacitor �lat-
tice A�. The voltage across the diode, Vn, is the directly mea-

surable diagnostic in the experiment at a time resolution of
0.4 �s. This time-periodic voltage is far from sinusoidal at
the ILM center �see Fig. 3�, but its Fourier series must not
contain a dc offset, as this would cause a very large current
through inductor L2. Thus, Vn�t�=�mAm

�n� sin�m�t�.
In the experiment, we do not monitor the currents directly,

but we can nevertheless estimate the magnitude of the ac
currents, using the circuit equations

Vn−1 − Vn = L1dJn/dt ,

Vn = L2dKn/dt , �5�

where J and K are the currents through inductors L1 and L2,
respectively.

By numerical integration of Eq. �5� using the trace in Fig.
3, we find the peak to peak currents Jpp=2.0 mA and Kpp
=10 mA at the ILM center. From the symmetry of the ILM
voltage profile, it is evident that Jn	−Jn+1, and so currents
from the three inductors connected to the ILM-center node n
are all directed toward that node and �one half-cycle later�
away from that node. By Kirchhoff’s node rule, it is clear
that this ac current has to be channeled through the diode.

At the diode, Vn causes a dc current according to Eq. �1�.
It is clear that this dc current flows in the forward direction,
and it will be largest at the ILM center and rapidly decreas-
ing to either side. We can estimate In

DC using Vn from Fig. 3
in conjunction with Eq. �1� and performing an integral over
one period. This yields for the ILM center, In

DC=0.23 mA,
for the next site over, In−1

DC =0.023 mA, and for the next-
nearest neighbor, In−2

DC =0.32 �A. The current does not
strictly vanish in the wings due to the driver maintaining a
certain voltage oscillation, but it becomes very small. These
dc currents, In

DC, thus constitute a dc distortion in the lattice
associated with the presence of the ILM.

In the case of lattice A, the dc currents �which are spa-
tially concentrated at the ILM center� can easily flow to
ground via the inductors L2. In Lattice B, however, the
blocking capacitors in series with the diodes prevent this
flow of current to the ground. Instead, there the dc current
charges up the blocking capacitor. The result is that the
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FIG. 3. �Color online� Voltage oscillation of the ILM center for
a typical stationary ILM. The driver frequency and amplitude is 265
kHz and 3 V, respectively.
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blocking capacitor develops a dc voltage across it, with the
positive side facing the diode, which in turn biases the diode
and changes its effective capacitance.

Let us take a close look at the path of this dc current in the
circuit. From a dc perspective, a number of points in the unit
cell are grounded. The line containing inductor L1 is at dc
ground, and the left end of the resistor is held at ground by
the function generator �see Fig. 1�. The diode generates a dc
current, IDC, and is connected directly to ground at the bot-
tom. Thus, we see that the capacitor can charge to a maxi-
mum voltage of Vm= IDCR, and that the charging curve is
characterized by a time-constant of 	=

CVm

IDC =RC=10 ms.
Based on the estimate of IDC above, we calculate Vm
=2.3 V at the ILM center.

The end effect is that the ILM lowers the effective capaci-
tance of the diodes and therefore raises the resonance fre-
quency of the node at which it is centered. In essence, the
ILM generates over time an impurity at its center site. The
sign of this impurity is such as to repel the ILM from its
center site �13�. For instance, if the capacitor were allowed to
charge to its maximum voltage Vm, it would decrease the
effective diode capacitance from about 810 to 237 pF. This,
in turn, would cause a jump in local resonance frequency
from f =265 to 490 kHz, i.e., far into the linear dispersion
curve. Once the ILM hops to the neighboring site �for times
much faster than 	�, the process repeats itself. Thus, we see
that in lattice B, the ILM cannot linger, but is forced to move
through the lattice because it continually creates the cause
for its own motion.

This picture of ILM motion now readily explains two ex-
perimental observations. �1� The larger the ILM amplitude
�or the stronger the ac driver�, the larger the speed of the
ILM through the lattice is, since the dc current is increased.
�2� The larger the capacitance value of the blocking capaci-
tor, the lower the speed of the ILM is, since it takes longer to
generate the same voltage drop across the capacitor given the
same dc current.

The effect of self-detuning due to the charging of the ca-
pacitor also occurs in the unit-cell setting of Sec. II, and this
readily explains the aforementioned instability seen in the
nonlinear-response spectra within certain frequency win-
dows.

B. Modulational instability

One way to produce ILMs in both lattices is via the well-
known modulational instability �MI� of the driven uniform
mode. This has been used in mechanical �6�, microwave �19�
and optical systems �20� in order to produce such localized
modes. Let us examine the MI route that leads to either sta-
tionary or traveling ILMs in detail.

Figure 4 compares the responses of the two lattices with
and without the blocking capacitor to identical driving. As in
all subsequent density plots, the gray shading represents en-
ergy �with darker shades corresponding to higher energies�,
and the time and space are plotted on the horizontal and
vertical axes, respectively. Both lattices initially are unex-
cited before being subjected �at t=0 s� to a sinusoidal driver
of 4.0 V amplitude and 290 kHz frequency. Comparing the

two panels, it is apparent that the patterns induced by the
modulational instability are almost indistinguishable. Both
lattices exhibit an initial instability against the same spatial
wavelength. This is consistent with the earlier finding for the
unit-cell circuits where the blocking capacitor did not change
the weakly nonlinear response. It is clear that the difference
between traveling and stationary ILMs in this system cannot
be traced to the initial modulational instability process that
first creates localized structures as a result of the weakly
nonlinear response of the system. It should instead be iden-
tified at the strongly nonlinear regime to be examined in
more detail below.

Let us examine some further properties of the modula-
tional instability in this system. Figure 5 shows the spatial
voltage distribution at a series of time snapshots after the
driver of 3.0 V amplitude is first turned on. The time slices
were selected to display the maximum in each oscillation
cycle. In Fig. 5�a�, the driver frequency is 300 kHz, or just
below the measured linear uniform mode frequency of 315
kHz. We see that at first the voltage and energy is uniformly
distributed along the chain �solid trace at 11 �s�. After
25 �s, a spatial modulation becomes apparent; the initial
spatial wavelength of this modulation is fairly short, with six
peaks appearing in the 32 node lattice �dashed trace at
42 �s�. At longer times �dot-dashed trace at 120 �s�, this
wavelength increases somewhat �leading to a five-peak
trace�.

In Fig. 5�b�, the frequency is lowered to 268 kHz. Here
we observe that the spatial wavelength of the modulations
increases significantly. The initial modulation is seen as
fairly broad, containing only two peaks within the 32 nodes
at t=20 �s. This modulation eventually leads to only one
ILM, shown at t=60 �s, and eventually reaches its equilib-
rium amplitude after about 70 �s. It is evident that the even-
tual density of ILMs obtained in the lattice depends on the
driver frequency, with lower frequencies resulting in lower
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FIG. 4. �Color online� Experimental realization of the modula-
tional instability of the driven uniform mode. Respectively, �a� and
�b� indicate the lattices with and without the blocking capacitors.
The space-time contour plots of the energy distribution over the
lattice are shown in the panels.
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ILM densities. The connection is established via the details
of the MI; when the driver is far below the uniform mode,
the most unstable spatial wavelength is large, thus initiating
fewer ILMs in the fully nonlinear regime at longer times.

Let us return to lattice B �with the blocking capacitors� to
examine experimentally how traveling ILMs actually form.
Figure 6 depicts a typical data set in that regard. Here the
driver frequency and amplitude are set to 300 kHz and 5 V,
respectively. At short times, the familiar modulational insta-
bility mechanism is observed as before. As the localized

structures grow, a departure from the previous scenario oc-
curs and the localized structures become mobile. In the fig-
ure, this happens after around 150 �s, and it is this devel-
opment that is absent in lattice A. At this point, the mobile
localized structures �six in number� start to organize them-
selves into patterns of motion. A sequence of processes en-
sues that results in fewer and more energetic ILMs; in the
figure, this happens at around 1.25 ms and then again around
2.5 ms. Each time the number of localized structures is re-
duced but their strength increases; this type of scenario has
been observed elsewhere as, e.g., in �21� �although there the
resulting ILMs are stationary�. Finally, only three traveling
ILMs survive. Figure 6�b� shows the final situation obtained
under continuous-wave driving conditions. �Note that the
time axis starts at t= t0, where t0 is large compared to the
interval shown.� Here a stable pattern of two traveling ILM
is sustained as long as the driver is on. Further note that the
speed of the localized features increases stepwise, as they
consolidate and their amplitude gets larger. This result is
consistent with Ref. �18� where the speed of the ILM was
mapped as a function of driver amplitude and frequency. The
difference is that here the ILM amplitude increases not due
to changes in the driving conditions, but due to the self-
organization process.

C. ILM seeding

Although MI is a particularly useful technique toward
producing ILMs, one of its important disadvantages is that it
relies on the manifestation of the instability, which naturally
is a process whose exact dynamics is extremely sensitive to
noise, and therefore in a perfectly periodic system the exact
location of the pattern formed would be unpredictable, as
would the eventual locations of the ensuing ILMs. In actual
macroscopic lattices, such as this one, there will always be
some small deviation from perfect periodicity due to the im-
possibility of manufacturing identical unit cells. These small
lattice impurities will then guide the evolution of the MI into
repeatable patterns that are nevertheless not controllable
from the outset.

There is, however, a more direct alternative method to-
ward the creation of ILMs in the electrical lattice �13�. The
latter relies on creating a temporary impurity at a site chosen
as the ILM center. Instead of using an actual impurity, how-
ever, in this section we demonstrate that switching locally
between the two types of lattices discussed in this paper
�with and without the blocking capacitor� can produce an
ILM at a lattice site of our choice. In this scheme, a blocking
capacitor is temporarily introduced at one particular lattice
site �using an electronic switch� in a lattice otherwise free of
such capacitors. Thus, the �integer� translational symmetry of
the lattice is broken at one site. It is important to note that the
introduction of the blocking capacitor does not change the
linear �or weakly nonlinear� properties of the unit cell, how-
ever. In this sense, we do not introduce a linear impurity, but
rather one that will only be activated in the highly nonlinear
regime.

This switching action reproducibly results in the forma-
tion of an ILM, as shown in Fig. 7. Here, the onsite energy at
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FIG. 5. �Color online� Snapshots at different times of the volt-
age dependence on the lattice node, illustrating the experimental
manifestation of the modulational instability of the driven uniform
mode for �a� 300 and �b� 268 kHz. The driver amplitude is 3 V. In
the top panel, the solid line shows the lattice at 11 �s, the dotted at
25 �s and the dashed at 42 �s. In the bottom, we see the cases of
20 �solid� and 60 �s �dotted�.

FIG. 6. �Color online� Similar to Fig. 4, but for a much longer
evolution time scale. The modulational instability of the driven uni-
form mode is illustrated but also the path of self-organization to-
ward a final state of two traveling ILMs is highlighted. �a� MI and
pattern selection at short times and �b� at long times.
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each node of the lattice is plotted versus time. It is calculated
from the measured voltage via En=1 /2C
Vn

2�, where the
brackets indicate averaging over one period. Note that the
switch turns on at 20 �s and off at 40 �s. The solid line
depicts the energy evolution at the center of the ILM �the
switch location�, and the dotted and dash-dotted traces show
N=1 �i.e., nearest neighbors� and N=3, respectively. The
small oscillations in the solid trace are due to the actual
voltage oscillations at 280 kHz �which persist due to imper-
fect box-car averaging�.

We see that the edges of the pulse controlling the switch
induce spikes in the response of the lattice node. The spike
after the trailing edge of the pulse then imparts to the center
site enough energy for it to be able to connect to the driver.
The energy spike at the center site actually manifests itself
after some time delay as a dip in energy at the neighboring
sites. In cases where the pulse width is longer than the
20 �s, one can also observe the temporary creation of an
“impurity” mode during the pulse �in quotes because the
difference manifests only in the nonlinear regime�. This im-
purity mode then merges with the ILM after the pulse ends.

It should be noted that additional ILMs can emerge spon-
taneously via MI if the driver frequency and amplitude are
chosen appropriately. However, we find that there exists a
fairly small region in parameter space, where MI is sup-
pressed and a seeded ILM can still lock to the driver. For the
data shown, we found that at a frequency of 280 kHz, the
range in driver amplitude where both conditions are fulfilled
is between 3.96 and 4.20 V. Below the lower bound, the
seeded ILM cannot lock to the driver and dies out, whereas
above the upper bound, additional ILMs are created via MI.
The exact range does depend somewhat on the lattice site
due to small variability of electronic components.

D. ILM capture and release

Finally, let us invert the situation of the previous section
by starting with a lattice with the blocking capacitors in

place �lattice B� and enabling one node to switch out this
capacitor at particular times. Thus, we start with ILMs that
travel through the lattice. The question is what happens when
such a traveling ILM encounters a node without the blocking
capacitor �i.e., the nonlinear impurity of such a node�. Simi-
lar questions have been numerically monitored for ILMs in
various settings, predominantly with linear defects �22,23�,
although examinations of nonlinear defects also exist �24�.
Figure 8 illustrates what can result in this situation. The am-
plitude here is set to 4 V and the frequency to 280 kHz.

In Fig. 8�a�, the capacitor is switched off �again using an
analog switch controlled via a pulse generator� at the time
the traveling ILM arrives at that node. In this case, the trav-
eling mode gets captured and in effect becomes a stationary
mode. Once the capacitor is reintroduced at the node, the
ILM is released from the site and recovers its original speed.

In Fig. 8�b�, the traveling ILM is not near the node at the
time of the switching event and we see the traveling mode
collide with the stationary mode �which is created by the
switching event� at some later time. In this collision, the
traveling mode does not merge but is clearly repelled from
the stationary mode. In fact, the traveling ILM does not get
any closer than about three lattice sites from the switched
node before reversing its direction. In other instances, the
traveling mode is repelled as well and attempts to reverse
direction, but fails to lock to the driver and disintegrates very
quickly.

While the interaction between the traveling breather and
the impurity mode is always observed to be repulsive, this is
not necessarily the case after the capacitor has been switched
on anew, restoring the lattice periodicity. Now the traveling
mode can merge with the breather at the former impurity
site, before the latter has had time to depin from that site.
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FIG. 7. �Color online� The energy evolution of three lattice sites
�solid: ILM center, dotted: its nearest neighbor, dash-dotted: three
sites away� as a blocking capacitor is switched on within a lattice of
type A for 20 �s.

FIG. 8. �Color online� Two space-time evolution examples,
upon turning on the nonlinear impurity �i.e., switching off the
blocking capacitor� in a single node of an otherwise type A electric
lattice. �a� The traveling mode gets captured and becomes a station-
ary mode at N=25 and is subsequently released �at will� by switch-
ing on the relevant capacitor anew. �b� Here the traveling mode
collides with the stationary mode and is repelled from it. Subse-
quently, the blocking capacitor is turned on again, producing a mov-
ing ILM which eventually, however, fails to lock to the driver and
disintegrates.
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The main outcome of the above considerations is that
when the timing of the switching event is chosen appropri-
ately, the traveling ILM can be captured at a particular site
indefinitely �a feature that has also been demonstrated
theoretically/numerically in different settings �14��. It can
also be released again by switching to the original configu-
ration. In practice, the ILM is trapped at the leading edge of
the pulse controlling the switch and released after the trailing
edge. Interestingly, the stationary mode does not always im-
mediately turn into a traveling ILM after the lattice period-
icity is restored. In fact, it can take on the order of 100 �s
for the ILM to resume its motion, during which time an
asymmetry between the sites on either side of the ILM center
gradually arises.

This is shown in Fig. 9 which depicts the ILM profile
�driven at 278 kHz at 3 V amplitude� for various time slices.
The lowest trace �circles� shows the localized mode during
the time the capacitor is switched off. The second trace
�squares� shows the ILM 6.4 �s �or almost two full oscilla-
tions� after the capacitor is switched back on. One difference
is that the nearest neighbors to the ILM center have increased
in amplitude. This is, in fact, the most noticeable change to
the profile immediately after the capacitor is switched back
on and lattice periodicity is restored. We see that a slight
asymmetry �not present after the first oscillation� has already
developed. This asymmetry continues to grow until the ILM
actually hops to the neighboring site and begins traveling

through the lattice, as is illustrated in the uppermost trace
�triangles� which shows the ILM profile after 150 �s. Com-
paring this time duration with results in Sec. III A, we find
that a bias voltage increase �self-generated at the ILM center�
of only about 35 mV, corresponding to a frequency shift of
about 2.5 kHz, is sufficient to move the ILM to the neigh-
boring site.

IV. CONCLUSIONS

The focus of this study has been twofold: first, to establish
the mechanism responsible for ILM motion in the electrical
lattice, and second, to demonstrate the experimental manipu-
lation of ILM motion in an electrical lattice. Fast and accu-
rate control of ILM motion has to be considered an essential
prerequisite to future technological applications that may be
derived from the phenomenon of energy self-localization.
Here we have outlined a potential scheme for accomplishing
such control in an electrical lattice.

In addition, we have uncovered a novel mechanism by
which the ILM propels itself: mobility emerges as a result of
the dc distortion associated with the ILM profile. Starting
with a more complete understanding—through modeling/
simulation and their comparison with experiment—of the
properties of the unit cell of these electrical lattices, we ex-
perimentally characterized in some detail the instabilities that
lead to stationary and traveling ILMs in them. We thereby
observed that the ILM motion is not imparted by the initial
MI, but occurs subsequent to it, with the eventual pattern of
traveling ILMs arising via a pattern selection process.

It would be of particular interest to try to generalize the
modeling considerations herein to the lattice setting and try
to obtain an analytical handle on the capture/release pro-
cesses presented. Another relevant direction would be to gen-
eralize the considerations presented here to higher-
dimensional settings and observe how traveling, capture,
release and interaction phenomena are affected by the two-
dimensional geometry. These aspects are presently under
study and will be reported in future publications.
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