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In this paper, we consider a system of strongly coupled logistic maps involving two parameters. We classify and investigate the
stability of its fixed points. A local bifurcation analysis of the system using center manifold theory is undertaken and then
supported by numerical computations. (is reveals the existence of a flip and Neimark–Sacker bifurcations.

1. Introduction

Coupled logistic maps originally gained attention in the
mathematical biology literature via their utility in models of,
for instance, populations of migrating species and envi-
ronmental heterogeneity [1–4]. Recent years, however, have
seen a renewed interest in the dynamics of coupled logistic
maps. At least two developments have spurred this re-ex-
amination: (a) the realization that discrete coupled maps
could be usefully exploited in digital encryption schemes
[5–7] and (b) success with their experimental imple-
mentation using electronic circuits [8–10]. Both of these
recent threads have revealed intricate and nonintuitive
behavior of these coupled maps.

One such behavior—spontaneous symmetry break-
ing—was recently highlighted and explored in [8]. (at
reference, however, did not attempt to analyze the chaotic
regime in this coupled system (i.e., for large values of r ),
focusing primarily on symmetry breaking and its basin of
attraction pertaining to n-cycles. What was observed therein
was that, as the coupling strength increased, an n-cycle would
abruptly give way to the symmetry-broken state (also
depending on the initial conditions used). No attempt was
made to classify this bifurcation. (is transition is an inter-
esting phenomenon also seen previously in experiments [10].

Here, we revisit the problem in amathematically rigorous way
and prove that this particular bifurcation is a flip bifurcation
[11, 12].

For larger r-values, beyond those explored in [8], an-
other bifurcation can be seen at even larger coupling values.
(is was first discovered experimentally in [10], where it was
shown that the symmetry-broken state itself undergoes a
transition to chaos. (is transition, however, did not
appear to follow the standard period-doubling route to
chaos, and no rigorous attempt wasmade in that reference to
analyze this bifurcation, although it was reasonably specu-
lated in [10] to involve a Neimark–Sacker bifurcation. In this
paper, we shed further light on the origins of this bifurcation
manifesting for sufficiently large r-values and prove that the
initial instability is indeed due to a Neimark–Sacker
bifurcation.

(roughout this work, we consider the following discrete
system:

xn+1 � (1 − ϵ)f xn( 􏼁 + ϵf yn( 􏼁,

yn+1 � ϵf xn( 􏼁 +(1 − ϵ)f yn( 􏼁,
(1)

where

f(z) � rz(1 − z). (2)

Hindawi
Discrete Dynamics in Nature and Society
Volume 2020, Article ID 4103606, 14 pages
https://doi.org/10.1155/2020/4103606

mailto:aum24@psu.edu
https://orcid.org/0000-0002-8249-6753
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4103606


For convenience, the system can be rewritten in the form

F(x, y) � ((1 − ϵ)f(x) + ϵf(y), ϵf(x) +(1 − ϵ)f(y)),

(3)

where the parameters ϵ ∈ [0, 1] and r ∈ (0, 4).
(e structure of the paper is as follows. After providing

some technical background in Section 2, we start by sys-
tematically classifying all the fixed points and their stability
properties—in the rϵ plane—that manifest in this coupled
system in Section 3. In Section 4, we then focus on the
symmetry-broken 1-cycle—a fixed point unique to the
coupled system—and proceed to apply the center-manifold-
theoretic framework to prove that it becomes stable via a flip
bifurcation as the coupling strength parameter is increased.
We take the coupling strength, ϵ, to be our bifurcation
parameter and not the growth rate, r, which is typically
chosen. As mentioned, for even higher values of ϵ and r, the
symmetry-broken 1-cycle loses stability again. In this con-
text, we prove using standard theorems that the origin of this
instability is a Neimark–Sacker bifurcation. In Section 5, we
explore the flip and Neimark–Sacker bifurcations numeri-
cally and see excellent agreement with the predictions de-
rived from the theorems established in Section 4.

2. Invariant Manifolds and Center
Manifold Theory

We begin by stating important terminology and concepts
relevant to this work (see, for instance, [13, 14]). Generally,
we can say that a set S is an invariant set if iterates of the map
for any element of S stay in S for all integers. We will loosely
think of an invariant manifold as a set which locally has the
structure of Euclidean space, typically as surfaces imbedded
in Rn, for which the function representing the surface has a
maximal rank and can therefore be locally represented as a
graph, by way of applying the implicit function theorem.

We now define three important linear subspaces, rele-
vant to the study of dynamical systems, spanned by the
(generalized) eigenvectors of the Jacobian matrix DF(x, y)

at a fixed point (x, y): Es (the stable subspace), Eu (the
unstable subspace), and Ec (the center subspace). (e as-
sociated eigenvalues of each subspace have modulus less
than one, greater than one, or equal to one, respectively.
When DF(x, y) has no eigenvalues of unit modulus, (x, y)

is called a hyperbolic point and so its stability is determined
entirely by the eigenvalues themselves. Furthermore, for
hyperbolic points, Ec does not exist.

A hyperbolic fixed point is called a sink if the eigenvalues
of the Jacobian matrix evaluated at the fixed point have
magnitude less than one. Such a fixed point is locally as-
ymptotically stable. If the magnitudes of both eigenvalues
are greater than one, the hyperbolic fixed point is called a
source and is locally asymptotically unstable. Moreover, a
hyperbolic fixed point is called a saddle point if only one of
the eigenvalues has magnitude greater than one.

(e stable manifold theorem [15] guarantees the exis-
tence of local stable and unstable invariant manifolds Ws

loc

and Wu
loc which can be viewed as nonlinear analogues of the

linear subspaces Es and Eu, respectively. (ese invariant
manifolds are tangent to these the two linear subspaces, have
the same dimensions as these subspaces, and are as smooth
as the underlying map.

(e center manifold theorem (see chapter 1 in [15] or
[13]) asserts the existence of an invariant manifold tangent
to the center eigenspace Ec which can be nonunique and
“nonsmooth” (in a certain sense) (see chapter 3 in [15] or
[13]), where the dynamics of the nonlinear system (at, say,
the trivial fixed point) restricted to the center manifold is
determined by a c-dimensional map, a map whose di-
mension is the same as that of the center subspace Ec, where
(x, y) ∈ Rc × Rs and both Rs andRc are subsets of Rn. So,
for a two-dimensional system, such as the system studied in
this paper, the dynamics of the nonlinear map are deter-
mined by a one-dimensional map.

Herein lies the significance of center manifold theorem,
rather than studying the map on the entire domain of the
map to determine its dynamics, in which we can restrict this
analysis to the center manifold, an invariant manifold with
dimension equal to the dimension of the center subspace,
which is less than the dimension of the map’s domain. In
addition, using the invariance of the center manifold one can
derive a quasi-linear partial differential equation that the c-
dimensional map characterizing the center manifold must
satisfy in order for its graph to be an invariant center
manifold. To find this map, one must solve this partial
differential equation. (us, this theorem can be viewed as
type of reduction principle that one can apply to ascertain
the stability of nonhyperbolic fixed points when Eu is trivial.

(erefore, in this paper, we restrict our use of center
manifold theory to the case where the Jacobian matrix has its
spectrum inside the unit circle apart from one or two ei-
genvalues. For an additional reference on center manifold
theory, see [16].

3. Classification of the Fixed Points of the
Nonlinear System

We begin our analysis of system (3) by solving the equations

(1 − ϵ)rx(1 − x) + ϵry(1 − y) � x,

ϵrx(1 − x) +(1 − ϵ)ry(1 − y) � y,
(4)

and obtaining the fixed points of our system, as shown in
more detail in [8]:

(0, 0),

r

r − 1
,

r

r − 1
􏼒 􏼓,

x
∗
, y
∗

( 􏼁,

y
∗
, x
∗

( 􏼁,

(5)

where
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x
∗

�
r(2ϵ − 1) + 1 −

����������������������������
(r(1 − 2ϵ) − 1)(r(1 − 2ϵ) + 4ϵ − 1)

􏽰

2r(2ϵ − 1)
,

y
∗

�
r(2ϵ − 1) + 1 +

����������������������������
(r(1 − 2ϵ) − 1)(r(1 − 2ϵ) + 4ϵ − 1)

􏽰

2r(2ϵ − 1)
.

(6)

We note that x∗ andy∗ are real valued if and only if
Δ � (1 − 4ϵ)(r − 1)2 + 4ϵ2r(r − 2)≥ 0. (is occurs when

r ∈ (3, 4),

ϵ ∈ 0,
r − 1
2r

􏼔 􏼕,

or ϵ ∈
r − 1

2(r − 2)
, 1􏼢 􏼣.

(7)

In addition, x∗ � y∗ if and only if Δ � 0 which occurs
when ϵ � ((r − 1)/2r) or ϵ � ((r − 1)/2(r − 2)), and so for
these values of ϵ the fixed point (x∗, y∗) coincides with one
of the two symmetric fixed points: (0, 0) or
(((r − 1)/r), ((r − 1)/r)), respectively. (roughout this work,
we consider only (x∗, y∗) and not (y∗, x∗), its flipped
counterpart. Following [8], we determine conditions for a
fixed point to be classified as a hyperbolic or nonhyperbolic
fixed point, and to determine the stability type of hyperbolic
fixed points, we compute the Jacobian of our map F:

DF(x, y) �
(1 − ϵ)r(1 − 2x) ϵr(1 − 2y)

ϵr(1 − 2x) (1 − ϵ)r(1 − 2y)
􏼠 􏼡. (8)

By solving the characteristic equation,

det(DF(x, y) − λI) � 0. (9)

(e eigenvalues of the Jacobian evaluated at a fixed point
(x, y) are computed as follows:

λ1,2 � r(1 − ϵ) + r(ϵ − 1)(x + y)

±
�����������������������������

r2(1 − 2ϵ)(x − y)2 + ϵ2(x + y − 1)2
􏽱

.
(10)

Although the characteristic equation is characterized by
the three principle invariants, where each in turn is a
function of the eigenvalues of the Jacobian and one can use
the Jury conditions to determine the stability of the fixed
points, we take amore straightforward approach and analyze
the eigenvalues and their magnitudes directly. (is direct
approach yields more “directional” information about the
magnitudes of both eigenvalues.

Using these definitions and the eigenvalues associated
with each fixed point, we determine the parameter-depen-
dent regions where each of the fixed points is asymptotically
stable, unstable, a saddle point, and a nonhyperbolic point,
as stated in the following theorem:

Theorem 1. Fixed point classification and stability

A. (i) -e fixed point (0, 0) is sink if r ∈ (0, 1) and
ϵ ∈ [0, 1].

(ii) (0, 0) is a source if r ∈ (0, 1) and ϵ ∈ [0, ((r − 1)/2r))

or ϵ ∈ (((r + 1)/2r), 1].
(iii) (0, 0) is a saddle point r ∈ (1, 4) and
ϵ ∈ (((r − 1)/2r), ((r + 1)/2r)) (here,
|λ1|> 1 and |λ2|< 1).

(iv) (0, 0) is a nonhyperbolic point (specifically here,
λ2 � − 1 and |λ1|> 1) if

r ∈ (1, 4),

ϵ �
r + 1
2r

,

λ2 � 1, λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1, for r ∈ (1, 4), ϵ �
r − 1
2r

,

λ1 � 1, λ2 � − 1, for ϵ � 1, r � 1,

λ1 � 1, λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 1, for ϵ ∈ (0, 1), r � 1,

λ1 � λ2 � 1, for ϵ � 0, r � 1(1: 1 resonance).

(11)

B. (i) -e symmetric fixed point (((r − 1)/r), ((r − 1)/r))

is a sink if

r ∈ (1, 3), for all ϵ in[0, 1]. (12)

(ii) (((r − 1)/r), ((r − 1)/r)) is a source if

r ∈ (0, 1) and ϵ ∈ 0,
r − 1

2(r − 2)
􏼢 􏼡,

or r ∈ (0, 1) and ϵ ∈
r − 3

2(r − 2)
, 1􏼠 􏼣,

or r ∈ (3, 4) and ϵ ∈ 0,
r − 3

2(r − 2)
􏼢 􏼡,

or r ∈ (3, 4) and ϵ ∈
r − 1

2(r − 2)
, 1􏼠 􏼣.

(13)

(iii) (((r − 1)/r), ((r − 1)/r)) is a saddle point (in this case
it means |λ1|< 1 and |λ2|> 1) if

r ∈ (0, 1) and ϵ ∈
r − 1

2(r − 2)
,

r − 3
2(r − 2)

􏼠 􏼡,

or r ∈ (3, 4) and ϵ ∈
r − 3

2(r − 2)
,

r − 1
2(r − 2)

􏼠 􏼡.

(14)

(iv) (((r − 1)/r), ((r − 1)/r)) is a nonhyperbolic point if
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r ∈ (0, 1) or r ∈ (3, 4) and ϵ �
r − 3

2(r − 2)
,

here λ1 � − 1, λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1􏼐 􏼑,

or ϵ ∈ (0, 1) and r � 3, here λ2 � − 1, λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 1􏼐 􏼑,

or ϵ ∈ (0, 1) and r � 1, here λ2 � 1, λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 1􏼐 􏼑,

or ϵ �
r − 1

2(r − 2)
and r ∈ (0, 1) or r ∈ (3, 4) and

λ1 � 1, λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1.

(15)

Furthermore,

λ1 � λ2 � − 1, ϵ � 0, r � 3, (1 : 2 resonance)

λ1 � 1, λ2 � − 1, ϵ � 1, r � 3.
(16)

C. (i) -e nonsymmetric fixed point (x∗, y∗) is a sink
if

r ∈ (3, 1 +
�
6

√
) and ϵ ∈

1
2

+

�
3

√

2

�������
1

r(r − 2)

􏽳

, 1⎛⎝ ⎤⎦,

or r ∈ (1 +
�
6

√
, 4) and ϵ ∈

1
2

+

�
3

√

2

�������
1

r(r − 2)

􏽳

, f2(r)⎛⎝ ⎞⎠,

(17)

where

f2(r) �
1
4

3 − 4r + 2r2

r(r − 2)
+

�����������
9 − 16r + 8r2

√

r2(r − 2)2
􏼢 􏼣. (18)

(ii) (x∗, y∗) is a source if

r ∈ (3, 4) and ϵ ∈ 0,
1
2

−

�
3

√

2

�������
1

r(r − 2)

􏽳

⎡⎣ ⎞⎠,

or r ∈ (1 +
�
6

√
, 4) and ϵ ∈ f2(r), 1( 􏼃.

(19)

(iii) (x∗, y∗) is a saddle point if r ∈ (3, 4) and

ϵ ∈
r − 1

2(r − 2),

1
2

+

�
3

√

2

�������
1

r(r − 2)

􏽳

⎛⎝ ⎤⎦,

specifically λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 1, λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1􏼐 􏼑,

or r ∈ [3, 4) and ϵ ∈
1
2

−

�
3

√

2

�������
1

r(r − 2)

􏽳

,
r − 1
2r

⎛⎝ ⎞⎠,

specifically λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 1, λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1􏼐 􏼑.

(20)

(iv) (x∗, y∗) is a nonhyperbolic point if

r ∈ [1 +
�
6

√
, 4),

ϵ � f2(r),
(21)

(here |λ1| � |λ2| � 1, λi ∈ C, i � 1, 2) or

r ∈ (3, 4) and ϵ �
1
2

+

�
3

√

2

�������
1

r(r − 2)

􏽳

,

specifically, λ2 � − 1, λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 1􏼐 􏼑,

or r ∈ (3, 4) and ϵ �
1
2

−

�
3

√

2

�������
1

r(r − 2)

􏽳

,

specifically, λ2 � − 1, λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1􏼐 􏼑,

(22)

or r � 3 and ϵ � 0, where our system now corre-
sponds to an uncoupled pair of logistic maps.

Proof. For the trivial fixed point (0, 0), λ1 � r and λ2 �

r(1 − 2ϵ). By inspection, we see |λi|< 1, for i � 1, 2
if and only if r ∈ (0, 1)for any epsilon in[0, 1]. (e remain-
ing parts of A can easily be deduced.

For the symmetric fixed point (((r − 1)/r), ((r − 1)/r)),
λ1 � r(1 − 2ϵ)((2/r) − 1) and λ2 � r((2/r) − 1). Again a
straightforward calculation shows that parts (i)–(iv) of B hold.

For the antisymmetric fixed point (x∗, y∗), a direct
calculation shows that the eigenvalues are

λ1 �
ϵ − 1 +(2ϵ − 1)

����������������������

ϵ2 +(1 − 2ϵ)Δ( )/(1 − 2ϵ)2
􏽱

2ϵ − 1
,

λ2 �
ϵ − 1 +(1 − 2ϵ)

����������������������

ϵ2 +(1 − 2ϵ)Δ( )/(1 − 2ϵ)2
􏽱

2ϵ − 1
,

(23)

from which one can establish (i)–(iv).
In Figure 1(a), we illustrate the stable, unstable, and

saddle regions for the fixed point (0, 0). Figures 1(b) and 1(c)
show these three regions for the fixed points
(((r − 1)/r), ((r − 1)/r)), and (x∗, y∗).

In Figure 1(a), the upper curve ((r + 1)/2r) is the flip curve
and ((r − 1)/2r) and r � 1 are fold curves. In Figure 1(b), the
two upper dashed curves denote flip and fold curves, re-
spectively, as well as the lines r � 3 and r � 1, respectively. In
Figure 1(c) we define h1 � ((r − 1)/2r), h2 � ((r − 1)/2(r −

1)), g1 � (1/2) + (
�
3

√
/2)

���������
1/r(r − 2)

􏽰
, g2 � (1/2) − (

�
3

√
/2)���������

1/r(r − 2)
􏽰

, and f2 � f2(r), as was defined earlier. Here,
g1 and g2 are flip curves,f2(r) is a Neimark–Sacker curve, and
h1 and h2 are the curves bounding the saddle regions. We also
note that, for the two symmetric fixed points, we have sym-
metric regions of stability/instability whose bounding curves
exhibit the translation symmetry ϵ↦1 − ϵ inherent in the
system’s defining equations. For the antisymmetric fixed point
(x∗, y∗), this translation symmetry manifests in the equations
for the bounding curves g1 andg2 but not in the regions
bounded by these curves. □

4. Local Bifurcation Analysis

4.1. Flip Bifurcation. Now, we determine the stability of the
nonhyperbolic fixed point (x∗, y∗) via center manifold
theory.
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In particular, we demonstrate that system (3) undergoes
a flip bifurcation at (x∗, y∗), where λ1 � − 1 and λ2 � ((4ϵ −
3)/(2ϵ − 1)) and where we choose ϵ as our bifurcation pa-
rameter and allow it to vary in a small neighborhood of
(x∗, y∗). Generically, a flip bifurcation is characterized by
the loss of stability of a periodic orbit as a parameter crosses a
critical value from above or below. (e flip bifurcation is
supercritical if, locally, there exist stable periodic orbits with
double the period for parameter values near the critical value
forming a new branch that emerges at this value. If unstable
periodic orbits with double the period coalesce with and are
destroyed by stable periodic orbits, the flip bifurcation is
subcritical. Moreover, a flip bifurcation occurs at an ei-
genvalue of –1 of the Jacobian of the map.

In order to apply center manifold theory, we assume that
our discrete system has the form

xn+1 � Axn + F xn, yn( 􏼁, (24)

yn+1 � Byn + F xn, yn( 􏼁, (25)

where all of the eigenvalues of the matrix A (an n × n matrix)
are on the unit circle and the eigenvalues of the matrix B (an
m × m matrix) are within the unit circle, and the Jacobian
matrix for the system has the form

A 0

0 B
􏼢 􏼣. (26)

We assume without loss of generality that the system has
the origin as a fixed point.We use a slight modification of the
following version of the center manifold theorem in [16]:

Theorem 2. -ere exists a Cr-center manifold for system (25)
that can be represented locally as

W
c
loc(0, 0) � (x, y, μ) ∈ R3 􏼌􏼌􏼌􏼌 y � h(x, μ), |x|< δ1,􏽮

|μ|< δ2, h(0, 0) � Dh(0, 0), |x|< ϵ, |μ|< δ}.
(27)

Furthermore, the dynamics of the system restricted to
Wc

loc(0) are given locally by the map

x⟼Ax + f(x, μ, h(x, μ)), forx ∈ R. (28)

In addition, we state the following theorem from [15]
which gives criteria for the existence of a flip bifurcation.

Theorem 3. Let fμ: R⟶ R be a one parameter family of
mappings such that fμ0 has a fixed point x0 with an eigen-
value of value − 1. Assume

zf

zμ
z2f

zx2 + 2
z2f

zx zμ
≠ 0, at x0, μ0( 􏼁,

1
2

z2f

zx2􏼠 􏼡

2

+
1
3

z3f

zx3􏼠 􏼡≠ 0, at x0, μ0( 􏼁.

(29)

1.0

0.8

0.6

0.4

0.2

ε Stable

Unstable

Saddle

Unstable

2 3 41
r

Stability diagram for the fixed point (0, 0)

r + 1
2r

r – 1
2r

(a)

1.0

0.8

0.6

0.4

0.2

ε Saddle Stable Saddle

Unstable Unstable

Unstable

2 3 41
r

Stability diagram for the fixed point r – 1
r

r – 1
r

,

r – 1
2(r – 2)

r – 3
2(r – 2)

r – 1
2(r – 2)

Unstable

(b)

Unstable

Unstable

Saddle

Saddle
Stable

r
3.2 3.4 3.6 3.8 4.0

1.0

0.8

0.6

0.4

0.2

ε

Stability diagram for the fixed point (x∗, y∗)

f2g2

g2

h2

h1

(c)

Figure 1: Diagrams of the regions of stability for three of the four fixed points of system (3) in the (r, ε) plane.
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(en, there is a smooth curve of fixed points of fμ
passing through (x0, μ0), the stability of which changes at
(x0, μ0). (ere is also a smooth curve c passing through
(x0, μ0) so that c − (x0, μ0) is a union of hyperbolic period 2
orbits. (e curve c has quadratic tangency with the line R ×

μ0􏼈 􏼉 at (x0, μ0).
We begin the establishment of a flip bifurcation at

(x∗, y∗) by first defining the set

HFP � (r, ϵ): r ∈ [3, 4), ϵ �
1
2

+

�
3

√

2

�������
1

r(r − 2)

􏽳
⎧⎨

⎩

⎫⎬

⎭, (30)

containing the parameters that satisfy the second
condition for a hyperbolic point in C (iv) from (eorem 1.
Suppose the parameters (rs, ϵs) ∈ HFP are arbitrarily chosen.
Consider the change of variables un � xn − x∗

and vn � yn − y∗. Furthermore, define ϵ � ϵ − ϵs
to be a new independent variable, where ϵs � (1/2) + (

�
3

√
/2)���������

1/r(r − 2)
􏽰

. Here, we transform the fixed point (x∗, y∗)

into (0, 0). System (3) now has the form

un+1

vn+1
􏼠 􏼡 �

a11un + a12vn + a13u
2
n + a14v

2
n + b∗ϵ+ b13ϵu2

n − b13ϵv2n
a21un + a22vn + a23u

2
n + a24v

2
n − b∗ϵ − b13ϵu2

n + b13ϵv2n
􏼠 􏼡,

(31)

where

a11 � rs 1 − ϵs( 􏼁 1 − 2x
∗

( 􏼁,

a12 � rsϵs 1 − 2y
∗

( 􏼁,

a13 � rs ϵs − 1( 􏼁,

a14 � − rsϵs,

a21 � rsϵ 1 − 2x
∗

( 􏼁,

a22 � rs 1 − es( 􏼁 1 − 2y
∗

( 􏼁,

b
∗

� rsϵ x
∗

( 􏼁
2

− x
∗

+ y
∗

− y
∗

( 􏼁
2

􏼐

− 1 − 2x
∗

( 􏼁un + 1 − 2y
∗

( 􏼁vn􏼁,

b13 � rs.

(32)

We begin the process of putting the system into the
format of the equations in (25) by first defining an invertible
matrix:

T �
− a12 − a12

a11 + 1 a11 − λ2
􏼠 􏼡. (33)

Determined by the eigenvectors associated with the
linearization of the system at (0, 0), using the
transformation,

un

vn

􏼠 􏼡 � T
Xn

Yn

􏼠 􏼡, (34)

and letting μ � ϵ, the system now takes the desired form:
Xn+1

Yn+1
􏼠 􏼡 �

− 1 0

0 λ2 − a11
􏼠 􏼡

Xn

Yn

􏼠 􏼡 +
F Xn, Yn, μ( 􏼁

G Xn, Yn, μ( 􏼁
􏼠 􏼡,

(35)

where

F Xn, Yn, μ( 􏼁 �
b2

a12 1 + λ2( 􏼁
a13a

2
12 − a13b1􏼐 􏼑X

2
n + a13a

2
12 − a13b2􏼐 􏼑Y

2
n􏼐 + 2a13 a

2
12 − b1b2􏼐 􏼑XnYn􏼐 + μb

∗
􏽨 􏽩

+
b2

a12 1 + λ2( 􏼁
b13μ a

2
12 − b

2
1􏽨 􏽩X

2
n + a

2
12 − b

2
2􏽨 􏽩Y

2
n + 2 a

2
12 − b1b2􏽨 􏽩XnYn􏼐 􏼑􏽨 􏽩

+
1

1 + λ2
a13 b1 − a

2
12􏼐 􏼑􏼐 􏼑X

2
n + a13 b2 − a

2
12􏼐 􏼑􏼐 􏼑Y

2
n + 2a13 b1b2 − a

2
12􏼐 􏼑XnYn − μb

∗
􏼐􏽨 􏽩

+
1

1 + λ2
− b13μ a

2
12 − b

2
1􏽨 􏽩X

2
n + a

2
12 − b

2
2􏽨 􏽩Y

2
n + 2 a

2
12 − b1b2􏽨 􏽩XnYn􏼐 􏼑􏽨 􏽩,

G Xn, Yn, μ( 􏼁 �
− b1

a12 1 + λ2( 􏼁
a13 a

2
12 − b1􏼐 􏼑X

2
n + a13 a

2
12 − b2􏼐 􏼑Y

2
n + 2 a13 a

2
12 − b1b2􏼐 􏼑􏼐 􏼑XnYn + μb

∗
􏽨 􏽩

·
− b1

a12 1 + λ2( 􏼁
b13μ a

2
12 − b

2
1􏼐 􏼑X

2
n + a

2
12 − b

2
2􏼐 􏼑Y

2
n + 2 a

2
12 − b1b2􏼐 􏼑XnYn􏼑XnYn􏽨 􏽩􏽨 􏽩

−
1

1 + λ2
a13 b1 − a

2
12􏼐 􏼑X

2
n + a13 b2 − a

2
12􏼐 􏼑Y

2
n + 2a13 b1b2 − a

2
12􏼐 􏼑XnYn − μb

∗
􏽨 􏽩

−
1

1 + λ2
− b13μ a

2
12 − b

2
1􏼐 􏼑X

2
n + a

2
12 − b

2
2􏼐 􏼑Y

2
n + 2 a

2
12 − b1b2􏼐 􏼑XnYn􏽨 􏽩􏽨 􏽩,

(36)
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where b1 � a11 + 1 and b2 � a11 − λ2. By applying the center
manifold theorem, we see that there exists a center manifold
for system (3) defined as

W
c
loc(0, 0) � (x, y, μ) ∈ R �‖

􏼌􏼌􏼌􏼌􏼌 y � h(x, μ), |x|< δ1,􏼚

μ|< δ2, h(0, 0) � Dh(0, 0), |x|< ϵ, |μ|< δ
􏼌􏼌􏼌􏼌􏼌􏼌 􏼛,

(37)

for sufficiently small ϵ and δ. To actually find the center
manifold as the graph of y � h(x, μ), we consider a power
series representation for this map:

y � h(x, μ) � A0X
2

+ A1Xμ + A2μ
2

+ O (|X| +|μ|)
3

􏼐 􏼑,

(38)

which we then substitute into (25). Hence, the center
manifold must satisfy the equation

h(− x + F(x, h(x, μ), μ), μ) � λ2h(x, μ) + G(x, h(x, μ), μ).

(39)

Write F in the form

F(X, Y, μ) � f1 − g1( 􏼁 e1X
2

+ e2Y
2

+ e3XY + μe4􏽨

+ μe8 e5X
2

+ e6Y
2

+ e7XY􏼐 􏼑􏽩,
(40)

and G in the form

G(X, Y, μ) � f2 − g2( 􏼁 e1X
2

+ e2Y
2

+ e3XY􏽨

+ μe4 + μe8 e5X
2

+ e6Y
2

+ e7XY􏼐 􏼑􏽩,
(41)

where

e1 � a13 a
2
12 − b1􏼐 􏼑,

e2 � a13 a
2
12 − b2􏼐 􏼑,

e3 � 2a13 a
2
12 − b1b2􏼐 􏼑,

e4 � b
∗
,

e5 � a
2
12 − b

2
1,

e6 � a
2
12 − b

2
2,

e7 � 2 a
2
12 − b1b2􏼐 􏼑,

e8 � b13,

f1 �
b2

a12 1 + λ2( 􏼁
,

g1 �
1

1 + λ2
,

g2 � − g1,

f2 �
− b1

a12 1 + λ2( 􏼁
.

(42)

By substituting the equations for F, G, and h into the
center manifold equation (39) and equating the coefficients
of like terms on either side of the equation, we determine the
coefficients A0, A1, andA2:

A0 �
f2 − g2( 􏼁e1

1 − λ2
,

A1 �
2A0 g1 − f1( 􏼁μe4

1 + λ2
,

A2 �
f1 − g1( 􏼁 A0e

2
4 + A1e4􏼂 􏼃

λ2 − 1
.

(43)

(e restriction of our map to the center manifold is
defined as the map

K(X, μ) ≔ − X + f1 − g1( 􏼁 e1 + μe8e5( 􏼁X
2

􏽨

+ e3 + μe8e7( 􏼁 X
3

+ A1X
2μ + A2μ

2
X􏼐 􏼑􏽩

+ f1 − g1( 􏼁 e2 + μe8e6( 􏼁 A
2
0X

4
+ A

2
1X

2μ2 + A
2
2μ

4
􏼐􏽨

+ 2A0A2X
2μ2 + 2A0X

3
A1μ + 2A1A2μ

4
X􏽩.

(44)

Straightforward but detailed calculations show that

α1 �
zK

zμ
z2K

zX2 +
2z2K

zX zμ
�2e1e4 f1 − g1( 􏼁

2
􏼌􏼌􏼌􏼌􏼌(0,0)
≠ 0,

α2 �
1
2

z2K

zX2􏼠 􏼡

2

+
1
3

z3K

zX3􏼠 􏼡

�2 f1 − g1( 􏼁 f1 − g1( 􏼁e
2
1 + A0e3􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌(0,0)
≠ 0.

(45)

By (eorems 2 and 3 above, the following result is now
established:

Theorem 4. If α1, α2 ≠ 0, then the map undergoes a flip
bifurcation at the fixed point (x∗, y∗) when the parameter ϵ
varies in a small neighborhood of ϵs. Moreover, if α2 > 0
(respectively, α2 < 0), the period 2 orbits that bifurcate from
(x∗, y∗) are stable (unstable).

4.2. Neimark–Sacker Bifurcation. A Neimark–Sacker bi-
furcation is characterized by a stable fixed point becoming
unstable at a certain critical value of the bifurcation pa-
rameter of the system in which an attracting closed invariant
curve manifests or a repelling closed invariant curve emerges
as the values of the parameter cross this critical value. In the
former case, we say the bifurcation is a supercritical Nei-
mark–Sacker bifurcation; in the latter case, a subcritical
Neimark–Sacker bifurcation. In either case, such a bifur-
cation is associated with discrete systems whose eigenvalues
are complex conjugates of modulus ones.

Here, we state a slight modification of a theorem from
[16] (Chapter 5), which outlines the criteria for the emer-
gence of such a bifurcation.
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Theorem 5 (Neimark–Sacker). Consider the family of Cr

maps (r≥ 5), Fμ: R‖� × R⟶ R‖� such that the following
conditions hold:

(1) Fμ(0) � 0, i.e., the origin is a fixed point of Fμ.

(2) DFμ(0)has two complex conjugate eigenvalues
λ1,2(μ) � r(μ)e±iθ(μ), where r(0) � 1, r′(0)≠ 0,

θ(0) � θ0.
(3) eikθ0 ≠ 1 for k �

1, 2, 3, 4(absence of strong resonances condition).

If, in addition, a≠ 0, where

a � − Re
(1 − 2λ)λ

2
ζ11ζ20

1 − λ
⎡⎢⎣ ⎤⎥⎦ −

1
2
ζ11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− ζ02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ Re λζ21􏼐 􏼑,

(a is called the first Lyapunov coefficient),
(46)

then, for sufficiently small μ and Fμ, there exists a unique
invariant closed curve enclosing that bifurcates from
the origin as a passes through 0. If a< 0, we have a su-
percritical Neimark–Sacker bifurcation. If a> 0, we have a
subcritical Neimark–Sacker bifurcation. -e complex
conjugate eigenvalues of our system are given by the fol-
lowing formulas:

λi �
ϵ − 1 ± i(2ϵ − 1)

�����������������������

− ϵ2 +(2ϵ − 1)Δ( )/(1 − 2ϵ)2
􏽱

2ϵ − 1
,

for i � 1, 2.

(47)

A simple calculation shows that

λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 1, for i � 1, 2 if and only if ,

�����
Δ − 1
2ϵ − 1

􏽲

� 1 orΔ � 2ϵ.

(48)

(us, the range of parameters, for which the eigenvalues
associated with the fixed point (x∗, y∗) are complex con-
jugates and have magnitude 1, can be described by the set:

HNS � (r, ϵ): ϵ2 +(1 − 2ϵ)Δ< 0,Δ � 2ϵ􏽮 􏽯

≡ (r, ϵ): r ∈ [1 +
�
6

√
, 4), ϵ � f2(r)􏼈 􏼉.

(49)

We now show that a Neimark–Sacker bifurcation occurs
at (x∗, y∗) for arbitrary parameters (eh, rh) ∈ HNS, taking ϵ
as our bifurcation parameter and allowing it to vary in a
small neighborhood of eh. So, we consider a small pertur-
bation of the parameter ϵ as follows: ϵ � ϵ − ϵh and trans-
form the fixed point (x∗, y∗) to the origin (0, 0), as before, to
produce the system (where we are essentially replacing es by
eh in an earlier statement of our system) with coefficients
that were defined in Section 3:

un+1

vn+1
􏼠 􏼡 �

a11un + a12vn + a13u
2
n + a14v

2
n + b∗ϵ+ b13ϵu2

n − b13ϵv2n
a21un + a22vn + a23u

2
n + a24v

2
n − b∗ϵ − b13ϵu2

n + b13ϵv2n
⎛⎝ ⎞⎠.

(50)

Now, the characteristic equation at (un, vn) � (0, 0) is as
follows:

λ2 − λ rh 1 − ϵh − ϵ( 􏼁 1 − 2x
∗

( 􏼁 + rh ϵh + ϵ( 􏼁 1 − 2y
∗

( 􏼁( 􏼁

+ r
2
h 1 − 2 ϵh − ϵ( 􏼁( 􏼁 1 − 2x

∗
( 􏼁 1 − 2y

∗
( 􏼁,

(51)

where

λ1,2 �
ϵh + ϵ( 􏼁 − 1 ± i 2 ϵh + ϵ( 􏼁 − 1( 􏼁

���������������������������������������

− ϵh + ϵ( 􏼁
2

+ 2 ϵh + ϵ( 􏼁 − 1( 􏼁Δ􏼐 􏼑/ 1 − 2 ϵh + ϵ( 􏼁( 􏼁
2

􏽱

2 ϵh + ϵ( 􏼁 − 1
. (52)

A straightforward calculation shows that

d
dϵ

λ1,2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 �
d
dϵ

�������������
􏽥Δ − 1

2 ϵ + ϵh( 􏼁 − 1( 􏼁

􏽳

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ϵ

� 0

�
2

1 − 2ϵh( 􏼁
2 + rh( 􏼁

2
− 2rh > 0,

for rh, ϵh( 􏼁 ∈ HNS,

(53)

where
􏽥Δ � 1 − 4 ϵ + ϵh( 􏼁( 􏼁(r − 1)

2
+ 4 ϵ + ϵ2h􏼐 􏼑rh rh − 2( 􏼁2 ϵ + ϵh( 􏼁.

(54)

Now, we state conditions for the absence of strong
resonances, i.e., λm

1,2(ϵh)≠ 1, m � 1, 2, 3, 4 for ϵ � 0. Here, we
note that the condition that the eigenvalues are a pair of
complex conjugates leads to the following condition de-
ducible from equation (34), using Δ � 2ϵ.

We can write

λ1,2 �
ϵ − 1 ± i(2ϵ − 1)

�����������������

3ϵ2 − 2ϵ( )/(1 − 2ϵ)2
􏽱

2ϵ − 1
. (55)

An examination of the condition λm(eh)≠ 1 for
m � 1, 2, 3, 4, leads to the constraints ϵ≠ 0, (2/3), (3/4), 1. For
r ∈ [1 +

�
6

√
, 4), these ϵ constraints, for ϵ ∈ HNS, are equiv-

alent to r≠ 1 +
�
6

√
which we now require. Now, we study the

normal form of our system when ϵ � 0 by first computing the
following Taylor expansion at (un, vn) � (0, 0):

un+1

vn+1
􏼠 􏼡 �

a11un + a12vn + a13u
2
n + a14v

2
n

a21un + a22vn + a14u
2
n + a13v

2
n

􏼠 􏼡, (56)

where the coefficients a11, a21, a12, a13, a14, a22 were defined
earlier. Next, we define A1 � ((ϵ − 1)/(2ϵ − 1)) and

A2 �

�����������������

(3ϵ2 − 2ϵ)/(1 − 2ϵ)2
􏽱

; these coefficients represent the
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real and imaginary parts of λ1,2. Upon finding the eigen-
vectors associated with these eigenvalues, we construct the
following invertible matrix:

T �
− a12 0

a11 − A1 A2
􏼠 􏼡. (57)

Using the transformation,
un

vn

􏼠 􏼡 � T
Xn

Yn

􏼠 􏼡. (58)

(e system can be rendered in the form

Xn+1 � A1Xn − A2Yn + F Xn, Yn( 􏼁,

Yn+1 � A3Xn + A4Yn + G Xn, Yn( 􏼁,
(59)

where

F Xn, Yn( 􏼁 � c11X
2
n + c12XnYn + c13Y

2
n,

G Xn, Yn( 􏼁 � c21X
2
n + c22XnYn + c23Y

2
n.

(60)

Here, the coefficients are defined as

A3 �
A2
1 − A1 a11 + a22( 􏼁 + a11a22 − a21a12

A2
,

A4 � a11 + a22 − A1,

c21 �
A2
1a13 − 2A1a11a13 + a11( 􏼁

2
a13 − A1a12a23 + a11a12a23 + a2

12a23

A2
+

a3
11a13 + 3A2

1a11a13 − A3
1a13 − 3A1a

2
11a13

a12A2
,

c22 � 2a11a13 − 2A1a13 +
2A2

1a13 − 4A1a11a13 + 2a2
11a13

a12
,

c23 � A2a13 +
− A1A2a13 + a11A2a13

a12
,

c11 �
2A1a11a23 − A2

1a13 − a2
11a23

a12
,

c12 �
2A1A2a23 − 2a11A2a23

a12
,

c13 �
A2
2a23

a12
.

(61)

In addition, we have

Fxnxn

􏼌􏼌􏼌􏼌􏼌(0,0)
� 2c11,

Fxnyn

􏼌􏼌􏼌􏼌􏼌(0,0)
� c12,

Fynyn

􏼌􏼌􏼌􏼌􏼌(0,0)
� 2c13,

Fxnxnxn

􏼌􏼌􏼌􏼌􏼌(0,0)
� Fxnxnyn

􏼌􏼌􏼌􏼌􏼌(0,0)
� Fxnynyn

􏼌􏼌􏼌􏼌􏼌(0,0)
� Fynynyn

􏼌􏼌􏼌􏼌􏼌(0,0)
� 0,

Gxnxn

􏼌􏼌􏼌􏼌􏼌(0,0)
� 2c21,

Gxnyn

􏼌􏼌􏼌􏼌􏼌(0,0)
� c22,

Gynyn

􏼌􏼌􏼌􏼌􏼌(0,0)
� 2c23,

Gxnxnxn

􏼌􏼌􏼌􏼌􏼌(0,0)
� Gxnxnyn

􏼌􏼌􏼌􏼌􏼌(0,0)
� Gxnynyn

􏼌􏼌􏼌􏼌􏼌(0,0)
� Gynynyn

􏼌􏼌􏼌􏼌􏼌(0,0)
� 0.

(62)

For λ, λ � e±iθ, we must now show that a≠ 0, where

a � − Re
(1 − 2λ)λ

2
ζ11ζ20

1 − λ
⎡⎢⎣ ⎤⎥⎦ −

1
2
ζ11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− ζ02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ Re λζ21􏼐 􏼑,

ζ20 �
1
8

Fxnxn
− Fynyn

+ 2Gxnyn
􏼐 􏼑 + i Gxnxn

− Gynyn
− 2Fxnyn

􏼐􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌(0,0)

�
1
4

c11 − c13 + c22( 􏼁 + i c21 − c23 − c12( 􏼁􏼂 􏼃,

ζ11 �
1
4

Fxnxn
+ Fynyn

􏼐 􏼑 + i Gxnxn
+ Gynyn

􏼐􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌(0,0)

�
1
2

c11 + c13( 􏼁 + i c21 + c23( 􏼁􏼂 􏼃,

ζ02 �
1
8

Fxnxn
− Fynyn

− 2Gxnyn
􏼐 􏼑 + i Gxnxn

− Gynyn
+ 2Fxnyn

􏼐􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌(0,0)

�
1
4

c11 − c13 − c22( 􏼁 + i c21 − c23 + c12( 􏼁􏼂 􏼃,

ζ21 �
1
16

Fxnxnxn
+ Fxnynyn

+ Gxnxnyn
+ Gynynyn

􏼐 􏼑􏽨

+ i Gxnxnxn
+ Gxnynyn

− Fxnxnyn
− Fynynyn

􏼐 ]|(0,0) � 0.

(63)

Discrete Dynamics in Nature and Society 9



We summarize our work now as a theorem indicating
that a Neimark–Sacker bifurcation occurs at (x∗, y∗) and
elucidate the nature of the resulting bifurcation curve:

Theorem 6. If r≠ 1 +
�
6

√
and a≠ 0 then the map undergoes a

Neimark–Sacker bifurcation at the fixed point (x∗, y∗), when
the parameter ϵ varies in a small neighborhood of ϵh.
Moreover, if a< 0 (respectively, a> 0), then an attracting
(respectively, repelling) invariant closed curve bifurcates from
the fixed point for ϵ> ϵh (respectively, ϵ< ϵh).

5. Numerical Results

In this section, we usemathematics to numerically verify and
illustrate the conclusions of (eorems 1, 4, and 6, with
respect to the fixed point (x∗, y∗).

Using the flip equation ϵ � (1/2) + (
�
3

√
/2)

���������
1/r(r − 2)

􏽰

for r � 3.6, we have ϵ � 0.860844 and (x∗, y∗) �

(0.548868, 0.836032) and α2 � − 15.6546. Since the corre-
sponding value α2 < 0, the period-two orbits that bifurcate
from (x∗, y∗) are unstable and they are succeeded by a stable
period-one orbit. In Figure 2, we observe the emergence of
the period-one orbit at the bifurcation point. (e flip bi-
furcation occurs at ϵ � 0.860844. Here, we include a vertical
line at ϵ � 0.139156 to show at least numerically that there is
another flip bifurcation for ϵ � (1/2) + (

�
3

√
/2)

���������
1/r(r − 2)

􏽰
.

(is figure is very similar to the experimental and numerical
bifurcation plots contained in [10]. Figure 3 shows that the
unstable flip occurs in the chaotic region, that subsequently
we get a stable one-cycle thereafter, and that, for even larger
ϵ-values, this one-cycle becomes unstable again.

In Figures 4–6, we show further numerical evidence of a
flip bifurcation at several other values of r. Next, we consider
r � 3.1 which corresponds to ϵ � 0.968979. Here, the cor-
responding fixed point is (0.611386, 0.732523) and the value
of α2 � − 0.225324. (e bifurcation diagram in Figure 4
shows the onset of flip bifurcations at the two marked off
vertical lines ϵ � 0.031021 and ϵ � 0.968979.

Figure 5 gives a sequence of time series plots revealing a
stable symmetric two-cycle before the critical value of ϵ is
reached and a weak two-cycle at the critical value of ϵ. In the
last plot, we see the emergence of a one-cycle for a value of ϵ
nearby but larger than our critical value. Here, the chosen
values of ϵ are 0.95, 0.968979, and 0.988979, respectively.

For contrast, we consider a fairly high value of r � 3.83,
deep into the chaotic regime of the system. Here,
ϵ � 0.827119 and the initial conditions are (0.24, 0.7). (e
fixed point is (0.533607, 0.865478) and α2 � − 38.6552 (the
corresponding lower value of ϵ, where a flip may occur is
ϵ � 0.172881). (e accompanying sequence of time series
plots shows a chaotic cycle colliding with a two-cycle at our
critical value and the birth of a one-cycle for a value of
ϵ> 0.827119 close to our critical value. Additional time series
plots (not included here) in fact show a pattern of inter-
mittency periods of stability and instability of a symmetric
and antisymmetric two-cycles colliding before the one-cycle
is reached. In the panel, the chosen values of ϵ are 0.807119,
0.827119, 0.84, and 0.867, respectively.
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Figure 2: Bifurcation diagram for r � 3.6 and ε � 0.860844, initial
conditions (0.18, 0.61).
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Figure 3: Maximum Lyapunov exponent plot for r � 3.6.
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Figure 4: Bifurcation diagram for r � 3.1 and ε � 0.968979, with
initial conditions (0.09, 0.18).
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Figure 5: Time series plots for r � 3.1 and ε � 0.95, 0.968979, 0.988979, respectively.

20 40 60 80 1000
n

0.0

0.2

0.4

0.6

0.8

1.0

x,
 y

(a)

0.0

0.2

0.4

0.6

0.8

1.0

x,
 y

20 40 60 80 1000
n

(b)

20 40 60 80 1000
n

0.0

0.2

0.4

0.6

0.8

1.0

x,
 y

(c)

20 40 60 80 1000
n

0.0

0.2

0.4

0.6

0.8

1.0

x,
 y

(d)

Figure 6: Time series plots for r � 3.83 and ε � 0.807119, 0.827119, 0.84, 0.867, respectively.
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A similar picture emerges also at r � 3.5 and r � 3.6. In
these cases, below ϵc, the nonsymmetric two-cycle evolves
into the symmetric four-cycle (or quasi-four-cycle for
r � 3.6) with time, whereas above ϵc, it evolves into the
nonsymmetric one-cycle.

Using the relation ϵ � f2(r) and substituting 3.94 for
r, we get that ϵ � 0.872059 and the fixed point
(x∗, y∗) � (0.445316, 0.895769). Figures 7 and 8 below
show the formation of a Neimark–Sacker bifurcation and
chaotic regions in the phase plane for the initial con-
ditions (0.1, 0.3).

In Figure 7(a), where ϵ � 0.8718< 0.872059, the fixed
point is stable. Figure 7(b) illustrates the loss of stability of
the fixed point at ϵ � 0.872059.

In Figures 7(c)–7(f), ϵ � 0.8721, 0.8725, 0.874, 0.877,
respectively. Mhiri et al. [10] found a very similar pro-
gression of phase portraits, as the coupling increased.

Here, we see that, for increasing ϵ> 0.872059 relatively
close to ϵ � 0.872059, the gradual development of a closed
invariant curve, in other words, a supercritical Nei-
mark–Sacker bifurcation occurs. In addition, a detailed
computation of a yields a negative value. Furthermore,
Figures 8(a)–8(d) (where ϵ � 0.885, 0.888, 0.89, 0.92) show
the transition to a chaotic state with the appearance of 11
coexisting chaotic attractors in Figure 8(b) and a chaotic
attracting set in Figures 8(c) and 8(d), for values of ϵ further
away from 0.872059.

(e vertical line in the accompanying bifurcation dia-
gram shows the birth of Neimark–Sacker bifurcation. A plot
of the maximum Lyapunov exponent for r � 3.94 for ϵ in the
range [0.8, 1] is also included (Figure 9).

Negative exponents indicate stable regions within the
otherwise chaotic regime and positive exponents of the
chaotic regions.
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Figure 7: Formation of a Neimark–Sacker bifurcation.
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6. Conclusion

In this work, we investigated the dynamics of a discrete
coupled system of logistic maps. We determined the stability
of the system’s fixed points and used center manifold and
bifurcation theory to prove the existence of a flip and
Neimark–Sacker bifurcation for the nonsymmetric fixed
point (x∗, y∗). Using ϵ as our bifurcation parameter, our
numerical results indicate that the two-cycle is instrumental

in establishing the flip bifurcation at (x∗, y∗) above the
critical ϵ-value. (is picture seems to hold for various
r-values: for r� 3.1, for instance, we see a flip bifurcation
where the period is halved; for r� 3.83, the intermittent two-
cycle in the chaotic regime appears to facilitate the transition
to the stable one-cycle (x∗, y∗).

For sufficiently large r-values, the one-cycle, initially
established via the flip bifurcation, experiences a second
bifurcation as ϵ increases where it loses stability. A general
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Figure 8: Emergence of chaos.
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Figure 9: Bifurcation diagram and plot of the maximum Lyapunov exponent for r � 3.94.
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examination of the constant a in (eorem 6, as well as our
numerical evidence, show that a Neimark–Sacker bifurca-
tion occurs and is supercritical. Finally, we note that the rich
dynamics of the system also includes interesting chaotic sets
which will be analyzed further in a forthcoming work.
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