Conservation of Momentum
and Energy

7.1 A binary-star system

In the previous chapter we considered the motion of a planet subject
to a central force that was always directed from the planet towards
the origin where a star was sitting motionless. This is, of course,
not quite correct, since the star also experiences a gravitational pull
towards the planet and must therefore also move. This motion is
usually very small since stars tend to be much heavier than planets,
but it is not zero.

Let’s consider now the full two-body problem. To give us maxi-
mal flexibility in parameters, we can consider the two bodies both
stars in a binary-star system. We will creatively call the heavier
star “bigstar” and the lighter star “smallstar”. We could, of course,
proceed exactly like before, modifying the code in Chapter 6 to in-
clude the dynamics of the second object (i.e., the sun). But to illus-
trate another important physical concept, namely that of momen-
tum and momentum conservation, let us incorporate this quantity
in the code.

To review briefly, momentum is defined by p = mu. An object
has momentum by virtue of having mass and velocity. We can also
talk of the total momentum of a system of objects. In that case we
simply add the individual momenta of all the objects that make up
the system together (as vectors). Now, we can prove that when this
system is isolated, in other words when nothing outside this system
exists that would push or pull on the objects within the system, then
the total momentum of the system doesn’t change. We say that the
total momentum is conserved.
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Another useful concept in this context is the center of mass of a sys-
tem comprised of discrete objects/particles. We can compute the
coordinates of the center of mass using the well-known formula,

mix1 + moxo + ...
Lcom =
mi+mo+...

and similarly for the y-coordinate. Since VPython deals well with
vector quantities, we can also dispense with the individual compo-
nents and refer only the position vectors, 7, of the objects them-
selves:
Teom = m (7-1)
> Mm;

You may have learned that whenever the total momentum of a sys-
tem is conserved, i.e., when there is no net external force acting on
the system, then the center of mass cannot experience any accelera-
tion. In our notion, we can write,

d2
acom - ﬁ("?com) = 0. (7-2)

The proof of this statement is actually not difficult and well within
the reach of an introductory physics student. See if you can work it
out yourself.

One of our objectives will now be to “prove” this property about
the center of mass numerically by simply computing its location for
each time-step and then to observe its motion across the screen. An-
other will be to show that in this binary-star system, total momen-
tum will be conserved. It should be conserved because the way we
have set up the problem, the system is clearly isolated - there are no
other objects around at all.
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scene.range=5ell

bigstar = sphere(pos=vector(-2e11,08,0), radius=2eld, coleor=cecler.red,
make_trail=False, interwval=i10)

bigstar.mass = 3e30

bigstar.p = vector(®, 323, 0) * bigstar.mass

b = @ L0~ O W R =

smallstar = sphere(pos=vector(2e11,0,0), radius=1el@, color=color.yellow,
make_trail=False, interwval=18)

[=]

14 smallstar.mass = 1=30
15 smallstar.p = vector(®, -1=24, @) * smallstar.mass
16
17 dt = 1eb
18
12 centerofmass =
20 (bigstar.mass*bigstar.postsmallstar.mass#*smallstar.pos)/(bigstar.mass+smallstar.mass)
21
22 COM = cone(pos=centerofmass, axis=vector(®,1210,0),radius=1e1@,color=color.green,
23 make_trail=True)
24
25 while True:
26 rate(208)
27 r = bigstar.pos - smallstar.pos
28 F =6 * bigstar.mass # smallstar.mass * r.hat / mag2(r)
29
30 bigstar.p = bigstar.p - Fxdt
31 smallstar.p = smallstar.p + F=dt
32
3 bigstar.pos = bigstar.pos + (bigstar.p/bigstar.mass) # dt
34 smallstar.pos = smallstar.pos + (smallstar.p/smallstar.mass) = dt
35 COM.pos = (bigstar.mass*bigstar.pos+smallstar.mass+*smallstar.pos)/(bigstar.mass+
36 smallstar.mass)
37
35 primt ("The total momentum is", bigstar.p + smallstar.p)

Figure 7.1: The code for the binary-star system.

Let us again start with a code template - see Figure 7.1. One thing
you will notice immediately is that we are now not working in ar-
tificial units (as before) and instead use the true value for the gravi-
tational constant. That also forces us to use astronomically realistic
values for all other quantities in the problem, such as for the masses
and distances involved. Again, as long as all the inputs are in SI-
units, so will all the computed outputs.

As you can see, in the first six command lines, we basically set up
the properties about the two stars. For instance, the bigger star has
a mass of 3 x 1030 kg - three times that of the smaller star. For
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comparison, our sun’s mass is about 2 x 103" kg. One of the things
you will have a chance to play around with is the mass ratio of the
two stars.

The next line (Line 17) defines the computational time step. This
might strike you as an incredibly large time step, especially com-
pared to the values we have used before, but remember - everything
has to be astronomical, including time. The time step of 10° sec-
onds translates to a duration of slightly longer than an earth day.
Compared to the period of revolution this is still quite small.

Lines 19 and 20 are recognized from Equation (7.1) as nothing other
than 7,,,. The next two lines are there just so we can visualize the
location of center of mass on the screen, here in the aspect of a green
cone whose trajectory we will also keep track of via the “make_trail”
command.

The iterative part of the program starts with Line 25. We define the
vector, r, that runs from the small star to the big star. We could have
also reversed it, but it is important to be consistent. The way it is
defined, it will be parallel to the force on the small star and anti-
parallel to the force on the big star. By Newton’s third law, these
two interaction forces must be equal and opposite.

Lines 30 and 31 implement Newton’s second law,

= dp

F = e (7.3)
If we solve this for the small change in momentum, we get: dp =
Fdt; in other words, it takes a force to change the momentum. This
is also sometimes referred to as the impulse-momentum theorem.
Once we have calculated the new momentum, we can also update
the position of the corresponding star, since momentum, of course,
is intimately related to velocity - we get velocity by dividing the mo-
mentum by mass. This way, we do not have to explicitly refer to
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velocity at all in the WHILE loop.

7.2

Exercises

Run the program - does the computed total momentum
change over time? Is physics correct? Also examine the code
- is the result at all surprising?

You will also notice that the center of mass does not stay
stationary, but that it moves on the screen. We can make that
motion cease if we give the two stars initial momenta that
add to zero. Show that right now (i.e., in Figure 7.1) they two
initial momenta do not add to zero.

Now change the initial conditions such that the total mo-
mentum is in fact zero initially. What do you notice about
the center of mass motion on the screen? Also change
the viewer’s perspective to see the two-body motion from
different angles.

Make an additional change in initial conditions (positions
and velocities) and watch the orbits of the two stars around
each other. Consider turning on the “trails” on the orbits for
better visualization.

VPython allows you to view the motion from the perspective
of different observers (or reference frames). The command is
scene.camera.follow(bigstar). In the parenthesis appears
the name of the object that you want to make as the reference
frame. In the command above we take the big star as the
observer’s reference frame. To make things less confusing,
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turn off all the trails again.

« Now that you have explored the role of initial conditions a
bit, let’s turn to the mass ratio. Try one case where the ratio
is much larger than 3, and then one case for the ratio is close
to 1. What do you conclude from those two scenarios.

7.3 Energy in the Spring-Mass System

In Section 6.2, we explored the motion of a mass at the end of a
spring. We saw the sinusoidal motion that resulted from the com-
bination of Newton’s second law and Hooke’s law. Now we can
revisit this problem and analyze it through the lens of potential and
kinetic energy.

Remember that the potential energy stored in a stretched or com-
pressed spring, also called elastic potential energy, is given by U =
%ka:z. Furthermore, the kinetic energy of the end-mass is given by
K = %mv? Finally, the total mechanical energy is simply the sum
of the two energies, Epecp = U + K.,

Modify the code, as given in Figure 6.1, in the following manner.

« Add some lines that will compute the three energies, U, K,
and E,,cch.

« Then, instead of plotting position and velocity as a function
of time, instead plot the three energies that are now being
computed at each time step. What do you observe? Is the
total mechanical energy conserved over time? Explain!
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7.4 Simulating the Rutherford experiment

Another example that we will see is actually mathematically very
similar to the binary-star system is the famous Rutherford scattering
experiment. We know that two like charges repel via the Coulomb
force. This force has the same structure as the law of universal grav-

itation. It is given by,
F, = k%ﬁ (7.4)
r
where the Coulomb constant k£ = 9.0 x 10° N m?/C? plays the role
of the gravitational constant, G. Notice how this force also depends
inversely on the square of the distance between the two objects, and

that it is again a central force (indicated by the direction vector 7).

Ernest Rutherford’s experiment was to shoot alpha particles, which
are fast Helium nuclei, at a thin gold foil. The idea was to see if
and how the alpha particles would be deflected upon hitting the foil.
What Rutherford discovered was that every once in a while the de-
flection angle was very large so that the alpha particle was scattered
back to the source. The explanation for these large deflections is that
the positive charge in the gold atoms is actually highly concentrated
in the nucleus (and not smeared out). In fact, while the size of the
gold atom is on the order of 1019 meters, the nucleus is 100,000
times smaller, i.e., on the order of 10~ 1° meters.

So if the positively charged alpha particle hits a gold nucleus close
to head-on, since the two repel it should be deflected back. At the
same time, the Gold nucleus should also experiences some recoil. (If
it didn’t, momentum could not be conserved during the collision.)
Let us now use VPython to explore the different scenarios that can
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occur when we shoot an alpha particle at a gold nucleus.

While Equation (7.4) is very similar in form to Equation (6.7), the
length scales of the nuclear-collision problem could not be more dif-
ferent from that of the binary-star problem. In the nuclear prob-
lem, a typical distance (or characteristic length scale) is on the or-
der of 10~ 1% m, whereas in the gravitational context it was 101!
m - an incredible difference of 26 orders of magnitude. With this
change in spatial scale come other difference, such as in characteris-
tic mass and time. In short, we are now dealing with vastly smaller
lengths, vastly tinier masses, and vastly shorter times. Luckily for
us, VPython can handle all of these changes very well.

Figure 7.2 shows the new setup for the nuclear context.! The first
thing we notice is the new scene.range which catapults us into the
microcosm. Next we define the nucleus and its properties of mass,
charge and momentum.

In Line 13, we introduce the so-called impact parameter, b. This will
be an important control parameter for us to vary from run to run.
This parameter tells us, roughly speaking, by how much the alpha-
particle would miss the nucleus if it felt no repulsive force. Thus,
b = 0 corresponds to a perfectly head-on collision.

Next, we define the alpha particle and its properties of mass, charge
and momentum. Notice that we give the alpha particle some ini-
tial speed to the right. In fact, this initial speed is quite large,
vp = 5 x 107 m/s, about 17 percent of the speed of light. We need
large speeds for the alpha particle to get close to the gold nucleus.
This initial speed is another parameter we will be able to adjust later.

Line 22-25 set up arrows for the momenta of the two particles (alpha

This code is loosely based on the code by R. Chabay, “03-particle collision”, available in the
Matter-and-Interactions’s Glowscript-programs folder.
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Figure 7.2: Setting up the Rutherford-scattering code

and Gold nucleus) and the total momentum. In order to see these
arrows on the screen, they have to be stretched by the scale-factor,
scale.

Finally, we have added here for the first time a start-pause button,
which will allow us to start the code and pause it at any time. The
details of this section of code need not concern us here.

The main part of the code, namely the WHILE loop, is shown in Fig-
ure 7.3. We should recognize large chunks of it from before. Lines
52 to 55 are new. They will update the momentum vectors through-
out the interaction of the two particles. The lengths and direction of
the three momenta (alpha, nucleus, and total) are set via the .axis
assignment. Additionally, we have displaced the tail of the momen-
tum vector associated with the nucleus to coincide with the head of

ptot=arrow(pos=vector(le-14,1e-14,8),axis=(nucleus.ptalpha.p)#scale, color=color.white, shaftwidth=7e-16
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the alpha’s momentum vector. This way we can verify visually that
the two individual momentum vectors do indeed add to the same to-
tal momentum vector (via the head-to tail method of adding vectors).

39 while True:

48 rate(50)

41 if pot run: continue

432

43 r = alpha.pos - nucleus.pos

44 F =k * alpha.g * nucleus.q * r.hat / mag2(r)

45

46 alpha.p = alpha.p + F=dt

47 nucleus.p = nucleus.p — F*dt

45

49 nucleus.pos = nucleus.pos + (nucleus.p/nucleus.mass) # dt
58 alpha.pos = alpha.pos + (alpha.p/alpha.mass) * dt
51

52 pl.axis = alpha.p*scale

53 p2.axis = nucleus.p#*scale

54 p2.pos = vector{le-14,1e-14,8) + alpha.p*scale

55 ptot.axis = (alpha.p + nucleus.p)#scale

Figure 7.3: The core of the Rutherford-scattering code

7.5 Exercises

« Run the code and observe the trajectories of the two par-
ticles. Also observe the particle’s momentum vectors in
the upper-right corner. You should see something like this:
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Run |

o Verify that the momentum vectors are in fact tangentially
parallel to the trajectory at any given instant of time. Why is
the red arrow so large if the gold nucleus seems to move so
slowly?

« Given the vector diagrams rendered in the upper-right
corner of the screen, is momentum conserved throughout the
scattering process? How do you know?

« Adjust the impact parameter, b. Make it progressively
smaller (all the way to zero) and observe what happens to the
deflection angle of the alpha particle.

« Now make b incrementally bigger than the value in Figure
7.2. What do you see now? Is momentum still conserved?

« You can now explore the role of the initial speed of the alpha
particle. How does the angle of deflection seem to depend on
this initial speed?
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