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Abstract
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that of occasional voters. Including both sets of nonvoters within an MNL model can lead to
faulty inferences. As a solution, we propose a baseline-inflated MNL estimator that models
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Introduction

Outcomes of discrete, polytomous choice are central to the study of politics. For instance,

scholars are frequently interested in whether individuals favor (or vote for) candidate A, candi-

date B, or neither candidate (i.e., abstention) in a given election. In a similar vein, many social

scientists empirically examine whether citizens or governments prefer (or enact) policy A, pol-

icy B, or maintain the status quo within policy areas ranging from health care (Propper, 2000)

to environmental conservation (Lehtonen et al., 2003) to minority language recognition (Liu,

2011). Each of these examples envisions a dependent variable with a small set of discrete, un-

ordered outcomes or choices. Accordingly, quantitative studies of such questions have favored

the use of polytomous choice maximum likelihood models—most frequently the multinomial

logit (MNL) model1—to estimate the effects of covariates on a respondent’s probabilities of

choosing each choice option over the others.

A second commonality shared by all of these dependent variables, however, is the pres-

ence of a “status quo,” “neither,” or “abstention” category representing instances wherein a

voter, a government, or another political actor favored doing nothing, or abstaining, rather than

choosing either option A or option B. While the inclusion of these abstention responses is often

necessary to ensure an unbiased sample for one’s dependent variable, they are usually of less

interest to the researcher than are the other “active” political choices, and accordingly, the vast

majority of polytomous choice models in political science treat these abstentions as the baseline

(i.e., reference) category in estimation and interpretation. Although this framework may help

to avoid selection on one’s outcomes of interest, observational sampling schemes of this sort

risk polluting the baseline choice-category with an excess number of unrealistic observations

that correspond to “inflated” individuals that will virtually never select a choice outcome other

than “abstain”. With a baseline category inflated in this manner, MNL estimates are likely to

be biased downward, as a significant portion of abstainers will be effectively impervious to the

1As discussed below, we surveyed all recent (2009-2013) articles appearing in the American Political Science
Review, American Journal of Political Science and Journal of Politics and found 42 studies that used a multino-
mial estimator in either a primary or robustness test. Of these articles, 93% favored the MNL model over other
multinomial choice estimators.
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effects of covariates on transition probabilities from abstention to choice. Furthermore, when

a subset of one’s covariates have dual effects on both the probability of routine abstention and

the probability of multinomial choice, then unit homogeneity assumptions2 can be violated and

MNL coefficients can become biased in indeterminate directions.

More succinctly, in instances where only a subset of a population actively encounters the

choice scenario of interest, naïve samples of the entire population will contain an excess number

of inactive choice-maker responses. Ignoring the heterogeneity that accordingly arises within

one’s “abstain” response set can yield faulty inferences. To illustrate these concerns, consider

the example of individual surveys of vote choice. Most major political surveys of American

citizens (e.g., the American National Election Studies) include questions designed to measure

citizens’ voting behaviors and opinions. Often, such questions ask respondents to indicate

which candidate they chose (or plan to choose) in a given election from a list of options (e.g.,

Barack Obama, Mitt Romney, or did not vote/neither). Researchers then typically analyze these

responses using multinomial logit (MNL) models of vote choice (e.g., Arceneaux and Kolodny,

2009; Kalmoe and Piston, 2013). “Vote-abstention” responses typically arise from two distinct

sources. Some nonvoters are best seen as “routine nonvoters,” in that they have an abstention

history that—due to slow moving or structural factors—is unlikely to change as a function of

the unique characteristics of a given election (e.g., candidate personality or get out the vote

[GOTV] efforts). A second subset of nonvoters are often instead characterized as “occasional

voters,” who have voted in recent elections but who may not make the point to vote in each

and every possible election (Gerber and Green, 2000; Niven, 2004; Hillygus, 2005; Parry et al.,

2008). Researchers have frequently sought to distinguish between these two different groups of

nonvoters when assessing the determinants of vote-abstention, often under the contention that

the salience of each determinant is likely to vary as a function of nonvoter type (Zipp, 1985;

Lacy and Burden, 1999; Sanders, 1999; Plane and Gershtenson, 2004).

Hence, treating nonvoters as a single homogeneous reference category within an MNL anal-

2That is, the assumption that one’s dependent variable will take on the same expected values given a particular
value on an independent variable (Braumoeller, 2013; King et al., 1994, 91-93).
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ysis ignores the heterogeneous effects of temporary and structural covariates on individual vote

choice (relative to abstention). As such, the estimated effects of short term shocks and candi-

date characteristics on turnout—which likely have no effect on routine nonvoters—will be bi-

ased downwards relative to their actual effect(s) within the subsample of voters that researchers

are often most interested in: occasional and routine voters. By contrast, the direct effect(s)

of structural factors on vote choice or turnout may be overstated—or misattributed to active

voting behavior—when routine nonvoters and occasional voters are pooled, leading to faulty

conclusions and misleading GOTV-type policy prescriptions.

These dynamics have not gone unnoticed by past political science research (Beger et al.,

2011; Braumoeller, 2013). Yet, MNL models continue to be the default choice for political

scientists seeking to analyze survey respondents’ polytomous vote choices, as well as for re-

searchers studying the related political-economic outcomes mentioned earlier. As the above

examples demonstrate, these practices may be especially problematic when one is interested

in parsing out the effects of individual and societal factors on the determinants of active po-

litical choices. To address these concerns, this paper presents a novel empirical model that

accounts for baseline inflation in polytomous choice outcomes—and the heterogeneity that it

causes—probabilistically to ensure that one’s primary choice estimates are unbiased. Drawing

on a number of recently developed zero inflated estimators, the model that we propose does so

by combining a logit stage for the estimation of an observation’s probability of being inflated

(or not) with a second, MNL outcome stage. By estimating these two stages as a single system

of equations, we are able to account for the possibility of baseline category inflation through

the use of theoretically-informed covariates, and to then derive unbiased estimates of the direct

effects of one’s covariates on the polytomous choice set of interest—now conditioned on the

probability of each estimate being a “non-inflated” observation.

Our proposed model, the Baseline Inflated Multinomial Logit (BIMNL), addresses in-

stances where one’s theory suggests that a single choice-category in a polytomous dependent

variable is inflated along the lines mentioned above. As such, the BIMNL model is one that
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brings a commonly used discrete choice model (the MNL) closer to our substantive knowledge

of voter behavior, and political phenomena more generally. For ease of exposition, we present

this new model for the case where one’s inflated (i.e., “abstention” or “status quo”) category is

treated as the (omitted) baseline category in the multinomial analysis as this is the most com-

mon practice in the literature. However, it is important to note that the baseline category in

multinomial models is arbitrarily determined, typically for convenience of interpretation, and

our applications of the BIMNL model could be easily modified to account for single category

inflation within a non-baseline response category instead.

This study proceeds as follows. In the next section we formally derive the BIMNL model

and briefly mention several test statistics that can be used to evaluate the “fit” of this model

relative to the MNL model. This is followed by a discussion of the BIMNL model in relation

to the multinomial-choice and zero-inflation methodological literatures. We then present the

results of two replication exercises in which the BIMNL model is applied to existing political

science studies of vote choice. We conclude by suggesting that the BIMNL model can be

extended in a number of useful directions, including additional applications to survey responses

of candidate preference, as well as the creation of a baseline inflated multinomial probit model

with and without correlated errors.

The BIMNL Model

The BIMNL estimator combines two latent equations: a logit equation which we denote

as the “first stage” estimator and a multinomial logit (MNL) equation hereafter referred to

as the “outcome stage” estimator. To motivate this model, consider a dependent variable Yi

with i ∈ {1,2, ...N} respondents (e.g., individuals). Suppose further that Yi is observable and

assumes the discrete unordered values of 0,1...J, with value Yi = 0 representing a baseline

“abstain” category. Next, let si denote a binary variable that indicates a split between regime

0 (si = 0) and regime 1 (si = 1), wherein si = 0 denotes “inflated abstainers” that will always

fall within the residual baseline category of Yi and si = 1 denotes “non-inflated abstainers”
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who may choose to abstain in a given instance, but who may also potentially select an option

in 1...J. In the context of a vote choice survey data set, the abstain responses in regime 0

(si = 0) would include routine nonvoters who never choose to vote, while responses in regime

1 (si = 1) include occasional nonvoters whose probability of transitioning to a candidate vote

choice outcome is not zero. Note that si is related to the latent dependent variable s∗i such that

si = 1 for s∗i > 0 and si = 0 for s∗i ≤ 0. The latent variable s∗i represents the propensity for

entering regime 1 and is given by the following linear additive specification, which we refer to

as the latent inflation equation:

s∗i = z′iγ +ui (1)

The inflation equation in 1, once re-stated via a binary (logistic) response model for our dichoto-

mous regime indicator si, constitutes the first stage of the BIMNL model. In equation 1, z′i is the

vector of covariates, γ is the vector of coefficients and ui is a standard-logistic distributed error

term. Hence the probability of i being in regime 1 is Pr(si = 1|zi) = Pr(s∗i > 0|zi) = Λ(z′iγγγ),

and the probability that i is in regime 0 is Pr(si = 0|zi) = Pr(s∗i ≤ 0|zi) = 1−Λ(z′iγ) where Λ(·)

is the logistic cumulative distribution function (c.d.f.).

If si = 1, then the observations in regime 1 are given by the discrete unordered variable Ỹi

which can take on any of J unordered values, and where Pr(Ỹi = j) = Pi j. In noting that by

definition, ∑
J
j=0 Pi j = 1, we then allow the probability of Ỹi = j ∈ J to vary as a function of

some k independent variable(s) xi, indexed by a K×1 vector of parameters specific to outcome

β j by restricting the probabilities to be positive and sum to one as so:

Pr(Ỹi = j)≡ Pi j =
ex′iβ j

∑
J
j=0 ex′iβ j

(2)

Hence, observation i’s probability associated with category j is expressed as a fraction of

the sum of all of observation i’s probabilities across the various categories J. This ensures that

Pr(Yi = j) ∈ (0,1) and that ∑
J
j=0 Pr(Ỹi = j) = 1. Under the assumption that the corresponding

error term (εi) for equation 2 is independently and identically distributed according to a Type
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I Extreme Value distribution, equation 2 denotes the primary statement of probability for the

MNL model. However, this model is also unidentified: knowing the (J − 1)× k values of

β0,β1, . . .βJ−1, also provides one with the probability of choosing the remaining alternative.

To identify the above MNL probabilities for estimation, we follow common practice and set

the parameters for the first of the J alternatives to zero, i.e, β0, which we refer to hereafter as

the baseline category. Doing so allows us to restate the probabilities for the baseline category(
Pr(Ỹi = 0)

)
and the other J−1 categories separately as:

Pr(Ỹi) =


Pr(Ỹi = 0| xi,si = 1) = 1

1+∑
J
j=1 ex′iβ j

Pr(Ỹi = j| xi,si = 1) = ex′iβ j

1+∑
J
j=1 ex′iβ j

( j = 1, ...,J)

 (3)

where β j = β j − β0 are now “rescaled” parameters in that they express the influence of the

various x’s on Pr(Ỹi = j) relative to Pr(Ỹi = 0).

Note that neither Ỹi nor si are observable in terms of the observed baseline outcomes. How-

ever, they are observed by the criterion Yi = Ỹi×si. The aforementioned expression thus implies

that the (baseline) outcome Yi = 0 can occur when si = 0 or when si = 1 and Ỹi = 0. It also

indicates that we can observe Yi = 1...J only when si = 1 and Ỹi = 1...J. Accordingly, the base-

line inflated MNL distribution arises as a mixture of a degenerate distribution in the baseline

category and the assumed distribution of the variable Ỹi as follows:

Pr(Yi) =

 Pr(si = 0|zi)+Pr(si = 1|zi)Pr(Ỹi = 0| xi,si = 1) for j = 0

Pr(si = 1|zi)Pr(ỹi = j| xi,si = 1) for j = 1,2..J

 (4)

Under the assumption that ui and εi identically and independently follow standard Type I Ex-

treme Value distributions, the BIMNL model can thus be defined as:

Pr(Yi) =


Pr(Yi = 0| xi,zi) = [1−Λ(z′iγ)]+

(
Λ(z′iγ)

1+∑
J
j=1 ex′iβ j

)
Pr(Yi = j| xi,zi) =

(
Λ(z′iγ)e

x′iβ j

1+∑
J
j=1 ex′iβ j

)
( j = 1, ...,J)

 (5)
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where, as above, Λ(·) is the logistic c.d.f. The expression in 5 thus provides the full probabil-

ities of the BIMNL Model. Herein, the probability of observing a baseline-choice observation

within the baseline equation of the BIMNL model is modeled conditional upon the probability

of an observation being assigned a baseline value in the multinomial d.g.p. plus the probability

of it being in regime 0 from the inflation equation. As a result, when the unordered dependent

variable is baseline-inflated and thus has two types of baseline observations, the BIMNL model

allows researchers to obtain more accurate estimates relative to a standard MNL model, which

is to say that the BIMNL estimates are both less biased and have greater coverage probabilities.

We demonstrate these points in the Monte Carlo simulations reported in our supplemental ap-

pendix. The remaining probabilities in 5 then correspond to the conditional probabilities of an

observation choosing a polytomous choice value other than the baseline value, conditional on

an observation being in the MNL state of the world.

Having described the conditional probabilities for the BIMNL model above, we can now

define the likelihood and the log-likelihood function of the BIMNL model. Specifically, let

θ === (γ ′,β ′,u′,ε ′)′for the full BIMNL model. The likelihood of the BIMNL model for an i.i.d

sample of i ∈ {1,2, ...N} observations can thus be defined as

L (θ) =
N

∏
i=1

J

∏
j=0

[Pr(yi = j| xi,zi,θ)]
di j

=
N

∏
i=1

0

∏
j=0

[Pr(si = 0)+Pr(si = 1)Pr(ỹi = j)]di j ×
N

∏
i=1

J

∏
j=1

[Pr(si = 1)Pr(ỹi = j)]di j (6)

where (yi = j| xi,zi) was described earlier and where di j = 1 if outcome j is realized in i

and is di j = 0 otherwise. The log likelihood function of the full BIMNL model where θ ===

(γ ′,β ′,u′,ε ′)′ can therefore be written succinctly as

`(((θ))) =
N

∑
i=1

J

∑
j=0

di j ln[Pr(yi = j|xi,zi,θ)]

=
N

∑
i=1

0

∑
j=0

di j ln

[
[1−Λ(z′iγ)]+

(
Λ(z′iγ)

1+∑
J
j=1 ex′iβ j

)]
+

N

∑
i=1

J

∑
j=1

di j ln

(
Λ(z′iγ)ex′iβ j

1+∑
J
j=1 ex′iβ j

)
(7)
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The log-likelihood function in 7 can be consistently and efficiently estimated using max-

imum likelihood which yields asymptotically normally distributed maximum likelihood esti-

mates. We provide a preliminary R package that permits users to estimate the BIMNL model

in full, and also supply the necessary R code for fully replicating and deriving the predicted

probabilities that are presented in our applications below. As the BIMNL’s estimation structure

is equivalent to that of extant zero inflated models, parameter identification for this estimator is

technically achievable even in cases of perfect overlap among the independent variables used

in each stage of the BIMNL model (i.e., without an exclusion restriction). Indeed, it has been

demonstrated in both theory and practice that zero inflated count and (zero) inflated ordered

estimators (without correlated errors) can achieve parameter identification without exclusion

restrictions—although such restrictions can help guard against misspecification and compu-

tational problems in these contexts (Harris and Zhao, 2007; Bagozzi and Mukherjee, 2012;

Staub and Winkelmann, 2012; Burger et al., 2009, 176). Even so, challenges to maximum

likelihood estimation may arise in these contexts when outliers are present, in cases of high

multicollinearity, or when parameter effects are poorly separated (Harris and Zhao, 2007; Hall

and Shen, 2010). Thus, when available, the use of exclusion restrictions in the BIMNL’s infla-

tion or outcome stage specification will likely improve estimation precision, as would alternate

estimation approaches such as robust expectation solution estimation (Hall and Shen, 2010).

Though theory should guide one’s decision of when to use a BIMNL model, several model

fit statistics may enable researchers to accurately test between the MNL and BIMNL models.

In line with conceptualizations of extant inflated models (Greene, 2011; Harris and Zhao, 2007,

1079), the MNL model is not directly nested in the BIMNL model via parameter restrictions,

though akin to the ZiOP/OP model case, the BIMNL model converges to an MNL model as

z′γ→∞ in equation 5 (i.e., as the probability of non-inflation goes to one). Hence, in choosing

between BIMNL and MNL models, non-nested model test statistics are preferable to nested

hypotheses tests. One frequently used test statistic for such model comparisons3 is the Vuong

test for non-nested models which, in the case of the (BI)MNL model, assigns mi as the natural

3See, e.g., Greene (2011); Harris and Zhao (2007); Bagozzi et al. (2014); Bagozzi and Mukherjee (2012).
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logarithm of the ratio of the predicted probability that Yi = j for one’s MNL model (in the

numerator) and one’s BIMNL model (in the denominator) and evaluates mi via a bidirectional

test statistic of

v =

√
N( 1

N ∑
N
i mi)√

1
N ∑

N
i (mi− m̄)2

(8)

where v <−1.96 favors the more general (BIMNL) model, −1.96 < v < 1.96 lends no support

to either model, and v > 1.96 favors the MNL model (Vuong, 1989).

Generalized likelihood ratio (LR) tests,4 Akaike information criterion (AIC), and Bayesian

information criterion (BIC) may each similarly serve as appropriate model selection criteria

for our particular non-standard model comparisons given previous research on non-nested (in-

flated) models (Harris and Zhao, 2007, 1079).5 In a similar fashion to the use of the AIC and

BIC in comparisons of logit and probit models, the AIC and BIC may be particularly appropri-

ate for comparing the BIMNL and MNL models as these two models each use the categorical

distribution family, albeit with different link functions for the choice probabilities.6 Lastly, one

could also plausibly use in-sample predicted probabilities (for outcomes Yi = 0...J) to compare

how well the MNL and BIMNL models replicate (and hence “fit”) the observed distribution of

outcomes on Yi via a proportion reduction in error (PRE) statistic. A PRE comparison for our

models would first employ the probability statements appearing in equations 3 and 5 to calcu-

late the in-sample predicted probabilities of each Yi = 0...J outcome and for each observation

as a function of the values on xi and zi. Classifying each observation based on the highest

Yi = 0...J predicted probability it receives, one can then quantify the proportion of “errors” that

the MNL and BIMNL correctly classify, relative to a null model that always predicts the most

frequent outcome on Yi.

We conduct extensive Monte Carlo experiments—presented in the supplemental appendix—

to evaluate the performance of each of these model fit statistics for the BIMNL and MNL mod-

4With degrees of freedom corresponding to the additional parameters estimated within the BIMNL model.
5Although the LR test is not strictly appropriate in this instance, given the non-nesting of inflated and compa-

rable non-inflated models (Greene, 2011; Harris and Zhao, 2007, 1079).
6In addition to the fact that the AIC and BIC were designed in large part for the specific task of in-sample

model comparison—as mentioned below.
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els. Our experiments indicate that standard information-based model selection criteria, such

as BIC and AIC, correctly chose between the BIMNL and MNL models (under each d.g.p.)

nearly 100 percent of the time. These findings are unsurprising7 given that in-sample model

comparisons are precisely what the BIC and AIC are designed to do, and thereby suggest that

the BIC and AIC may be the best choices for applied BIMNL-MNL model comparisons among

the model fit statistics discussed here. LR tests perform comparably, correctly choosing the

BIMNL and MNL models in 95-100 percent of our simulations. Akin to our findings for the

AIC and BIC, this result is consistent with the OP/ZIOP simulation results reported in Harris

and Zhao (2007). Also in line with these extant findings, the generalized Vuong test statistic

described above accurately chooses the BIMNL model when the d.g.p. was BIMNL, but per-

formed poorly in selecting the MNL model when the d.g.p. was MNL. The PRE fares even

worse in our simulations, exhibiting a preference for the MNL model no matter the d.g.p. and

often favoring neither model over the other. This poor performance is likely attributable to (i)

the PRE being a poor choice for model comparison when one’s observations disproportionately

fall within an single outcome category (as will typically be the case for inflated dependent vari-

ables) and (ii) the more general challenges associated with classification statistics such as the

PRE in what are often irreducibly stochastic political science applications. Hence, researchers

interested in using model fit statistics to supplement their (BIMNL versus MNL) model selec-

tion decisions should employ a combination of the test statistics mentioned above, and should

place more weight in the BIC, LR test, and AIC, relative to the Vuong test and the PRE.

In its design, the BIMNL model shares a number of notable similarities with extant lim-

ited dependent variable models. As alluded to above, the BIMNL model can be most directly

situated within the family of limited dependent variable finite mixture models known as “split

population” or inflated models. Like the BIMNL model, these models are explicitly designed

to account for inflation within a single category of one’s dependent variable. Well known ex-

isting inflated models include zero inflated Poisson (ZIP) and negative binomial count models

(ZINB; Greene, 1994), zero and middle inflated ordered probit (ZIOP and MIOP) models

7And are consistent with past simulation findings in this vein (Harris and Zhao, 2007).
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for discrete ordered outcomes (Harris and Zhao, 2007; Bagozzi and Mukherjee, 2012; Brooks

et al., 2012), and split population models for binary choice sets, such as the split population

logit (Beger et al., 2011). Each of these models includes a system of two equations that allow

one to estimate the effects of two potentially overlapping sets of covariates on (i) the proba-

bility of an observation arising from an inflation process specific to a single (usually Yi = 0)

outcome and (ii) the probability of one’s discrete outcomes of interest conditional on an ob-

servation not being inflated. What makes the BIMNL model novel in this case is its ability to

estimate these inflation processes within an unordered polytomous dependent variable, which

to our knowledge is the first such estimator to explicitly do so.

These inflation processes are distinct from the choice dynamics underlying other multi-

equation discrete choice models, such as selection models, as baseline inflation does not pre-

sume that one’s first stage process truncates all cases for that choice outcome from one’s set

of outcome stage choice categories. Rather, an inflation process augments unwanted cases to

the observed set of outcome choices. Hence, the BIMNL model conceives of vote choice dif-

ferently from earlier multi-equation models of vote choice (e.g., Born, 1990; Sanders, 1999) in

that it maintains “abstention” as an available multinomial outcome stage category—albeit one

in which the response set has been deflated by the inflation equation estimates. This frame-

work thereby allows researchers to correctly model vote choice in situations where candidate

choice cannot be assumed to be conditional upon all individuals making a separate, earlier de-

cision of whether or not to turnout for an election at all. Examples not only include measures

of vote choice where distinct populations of nonvoters are believed to be present within one’s

abstention category, but also encompass survey questions that ask individuals to choose from

a single response set that is comprised of both candidate choices and an abstention option, or

instances where individuals are asked to provide their candidate preference—rather than vote

choice—from a response set that includes an option of “neither” or “none of the above”.

Lastly, whereas our focus here is on developing a baseline inflated MNL model, one could

conceivably extend our approach to the multinomial probit (MNP) context. Doing so would
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allow for a full relaxation of the MNL model’s IIA assumption while also facilitating the in-

clusion of correlated disturbances between one’s inflation and outcome equations. While this

extension is intriguing, we currently choose to focus on the (BI)MNL model for the following

three reasons. First, the MNL’s IIA shortcomings aside, it remains the workhorse multinomial

choice estimator within applied political science research. Surveying the past five years (2009-

2013) of the American Political Science Review, American Journal of Political Science, and

Journal of Politics, we found 42 articles that employed a multinomial estimator in a primary

or robustness test (listed in the supplemental appendix). Of these 42 articles, only two used

an MNP model as opposed to an MNL model,8 and in both cases the authors mentioned doing

so only in a footnote as a robustness check to their primary MNL model of interest. Second,

the costs of using an MNP model often outweigh its benefits. As Dow and Endersby (2004)

demonstrate in this regard, the IIA assumption is not overly restrictive for most vote choice ap-

plications, while the MNP model is often fraught with estimation challenges in these contexts.

Finally, although an allowance for correlated disturbances between our estimating stages is a

promising extension, we do not consider this to be an overriding concern at present, given the

heightened identification problems associated with this allowance (Xiang, 2010; Bagozzi and

Mukherjee, 2012, 373) and the fact that an absence of this feature has far from impeded the

applicability and usage of extant zero inflated models (most notably, the ZIP and ZINB).

Replication I

To further illustrate the utility of the BIMNL model, this section presents two replications of

existing research. In the first, we replicate Arceneaux and Kolodny’s (2009) analysis of phone

and door-to-door canvassing endorsements during the 2006 Pennsylvania (PA) state House elec-

tions. One core facet of Arceneaux and Kolodny’s study employs a MNL model to examine

the effects of the aforementioned endorsement strategies (when undertaken by a liberal interest

group) upon the following individual vote choice options: Democrat, Republican/Other, No

response, or Abstained (their MNL baseline category). The corresponding dependent variable
8Or, in three instances, as opposed to the MNL model’s conditional logit reformulation.
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and sample include individual survey responses from approximately 2,000 randomly-selected

field experiment subjects across two PA House districts. More detailed operationalizations of

all variables used in the survey and analysis are reported in the supplemental appendix.

In brief, Arceneaux and Kolodny hypothesize that a liberal interest group’s Democratic

candidate endorsement may have crosscutting effects on potential voters depending upon these

potential voters’ party identification. Herein, the authors posit that a liberal group’s endorse-

ment may increase Republican-identifying individuals’ support for a Democratic candidate if

endorsements serve to educate potential voters on Democratic candidates’ actual issue posi-

tions, but may decrease potential Republican-leaning respondents’ support for a Democratic

candidate if liberal interest group endorsements instead serve as a “liberal” heuristic. In test-

ing these claims on individual vote choice, the authors find only weak support for the latter

expectation. In particular, while the liberal phone and canvassing treatments each have a neg-

ative effect on Republican-identifying individuals’ probabilities of Democratic candidate vote

choice, each fails to achieve statistical significance at the p < .10 level (one-tailed). More-

over, Arceneaux and Kolodny (2009, 763) also surprisingly find that each endorsement strategy

has no effect upon either Independent or Democratic identifying individuals’ probabilities of

Democratic vote choice.

Given the arguments presented above, we suspect that these muted findings may be partially

attributable to a heterogeneous mixture of routine and occasional nonvoters within the baseline

(“abstain”) category of the authors’ MNL model. As mentioned previously, we contend that

nonvoters are best viewed as two distinct groups. The first group correspond to routine nonvot-

ers who virtually never vote and pay little regard to election-specific factors in their repeated

decisions to abstain from voting and from politics in general. By contrast, we characterize the

second group as occasional voters, who vote intermittently but who may abstain from a given

election due to extemporaneous shocks such as temporary resource or knowledge constraints,

candidate specific distastes, or weather conditions.

Past research confirms that these two distinct sets of nonvoters exist, and demonstrates that
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the effects of voter mobilization efforts and related variables on individual-level turnout dif-

fers according to individuals’ differential levels of (non)voting propensity. For example, Parry

et al. (2008) find that even in high-profile races, the most important determinant of individual-

level voter turnout is vote history, and identify a positive effect for campaign communication

among “seldom” voters (registered but rarely active) as opposed to intermittent (occasional) and

routine voters. Hillygus (2005) draws a similar conclusion, in finding that seldom voters and

self-described “unintended” voters are the most likely to be positively influenced by campaign

contact. Niven (2004) also distinguishes among different (non)voter types when considering

the effect that campaign tactics have on turnout, finding that while contact increases the like-

lihood of turnout generally, the effect was most dramatic for intermittent voters (those who

cast at least one ballot in the recent past) who float in and out of the electorate. Thus, there is

good reason to suspect that for any given election, voting-age abstainers will be comprised of a

mixture of temporary nonvoters and routine nonvoters.

Moreover, the broad-based sampling scheme used in Arceneaux and Kolodny’s field experiment—

which randomly selected registered Democrats, unaffiliated voters, and registered Republicans

while placing a preference on infrequently voting Republicans (2009, 758)—likely reinforced

these dynamics for the election at hand. If these contentions are true—and the baseline cate-

gory of the aforementioned vote choice variable does indeed contain sizable proportions of both

routine and occasional nonvoters—then Arceneaux and Kolodny’s MNL coefficient estimates

may be predominantly a reflection of the effects of their covariates on individuals’ likelihoods

of total disengagement, rather than on individuals’ situational decisions to vote or not vote in

the election at hand.9 Note that this will be the case even while the authors’ turnout treatments

are randomly assigned, given the nonrandom assignment of the authors’ binary measures of

survey respondents’ party identifications (which are interacted with both treatments).

To evaluate these claims, we replicate the “pooled” MNL model reported in Arceneaux and

Kolodny (2009, 763: Table 2) using both the MNL and BIMNL estimators. We keep the out-

9In this manner, the authors’ MNL estimates reflect the average treatment effect of covariates on all potential
voters, which may be of theoretical or practical interest in some contexts, such as in assessments of an indiscrimi-
nate turnout drive’s effects—though such estimates could similarly be recovered from the BIMNL model.
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come (i.e., MNL) stage specifications for both models identical to those reported in Arceneaux

and Kolodny (2009, 763: Table 2) and include a set of theoretically-informed covariates in the

inflation stage of our BIMNL model. While our choices for inflation stage covariates are limited

to the control variables collected in Arceneaux and Kolodny’s original study, several such vari-

ables likely predict individuals’ propensities for being occasional nonvoters rather than routine

nonvoters. The authors’ measure of whether or not individuals voted in the past election (Vote

2004) is expected to be a strong predictor of this dichotomy according to past findings (Niven,

2004; Parry et al., 2008). Likewise, the open seat race in District 156 may constitute a relatively

higher proportion of occasional nonvoters, given that the opposing district in the authors’ study

is characterized as one dominated by a Republican incumbent whose district had proven safe

since 1978 (Arceneaux and Kolodny, 2009, 759-760).10 We also add a number of demographic

controls—such as age and female—to the BIMNL inflation stage in order to capture additional

structural factors that past research suggests may be related to habitual or temporary nonvoting

(Verba and Nie, 1972; Wolfinger and Rosenstone, 1980; Shields and Godel, 1997).

We report the complete table of outcome and inflation stage coefficient estimates for our

MNL and BIMNL models in the supplemental appendix, and focus our attention here on dis-

cussing substantive quantities of interest and model fit statistics. To begin, the left side of Table

1 reports the estimated effects of changes in each of our BIMNL model’s inflation stage co-

variates upon the predicted probability of a nonvoter being an occasional, rather than routine,

nonvoter.11 In line with expectations, the BIMNL’s inflation stage results suggest that having

voted in 2004 is associated with a statistically significant 39 percent increase in a nonvoter’s

likelihood of being an occasional nonvoter rather than a routine one. Similarly, and relative to

District 161, nonvoters in District 156 are significantly more likely to be occasional nonvoters,

perhaps owing to the higher contemporary levels of competitiveness in this district. The only

significant demographic predictor of nonvoter type is age, which here implies that older non-

10Since an absence of close or competitive elections may compel lower turnout (Nevitte et al., 2000; Blias,
2000, 60), thereby increasing the population of routine nonvoters.

11Standard errors are calculated via parametric bootstraps (m = 1000), while holding all other variables at their
means or modes.
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voters are associated with higher propensities for routine nonvoting—a relationship which may

be attributable to the (likely) nonlinear effects of age in this context. The right side of Table 1

indicates that all five of our model fit statistics consistently favor the BIMNL model over the

MNL model. Taken together, Table 1 provides an assortment of evidence to suggest that the

BIMNL model may offer an improvement over the MNL model in modeling Arceneaux and

Kolodny’s vote choice dependent variable.

[Insert Table 1 about here]

We next consider the outcome stage vote choice estimates obtained from our MNL and

BIMNL models which, as mentioned above, treat abstention as the baseline category. In de-

riving quantities of interest for these estimates, we hold our BIMNL inflation stage fixed at

pr(non-in f lation = 1) which enables us to directly compare our MNL model’s estimates for

all individuals to the BIMNL’s hypothetical estimates for only non-inflated individuals.12 This

matches the claims made above, as we argued that by better accounting for routine nonvot-

ers, the BIMNL model provides more accurate estimates of covariate effects among what is

typically researchers’ primary sample of interest: occasional and routine voters. In other appli-

cations, the simultaneous effects of covariates across both stages of one’s BIMNL model may

be of most interest,13 and these quantities (i) can also be easily derived from the probability

statements in equation 5 and (ii) have similarly been shown to exhibit less bias than compara-

ble non-inflated model quantities within extant studies of related (zero-)inflated models (Harris

and Zhao, 2007; Bagozzi et al., 2014). In line with Arceneaux and Kolodny’s original study, we

focus substantively on the estimated effects of 0→ 1 changes in both the phone and canvassing

treatment on the predicted probabilities of Republican, Democrat, and Independent individu-

als each voting for the Democratic candidate. Given the above claims, we estimate these first

differences in predicted probabilities relative to (non-inflated) abstention, and plot the resultant

mean estimates and confidence intervals in Figure 1.14

12These quantities are comparable to those reported for the MIOP(C) models in Bagozzi and Mukherjee (2012).
13See for example, Bagozzi et al. (2014), for a derivation of such quantities in a related zero inflated model.
14Parametric bootstraps (m = 1,000) are used to calculate the standard errors to these effects, while holding all
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[Insert Figure 1 about here]

We begin with the Republican identifier subsample (Figure 1a). Consistent with the results

reported in Arceneaux and Kolodny (2009), our MNL results suggest that phone and canvassing

treatments each have a significant negative effect on Republican voters’ probability of voting

for the Democratic candidate. Yet, in replicating these results with the BIMNL model, we find

that once routine nonvoters have been partitioned from our sample, the estimated effects of

either treatment on Republican voters, while larger, are no longer statistically distinguishable

from zero at traditional levels. Turning next to Independents (Figure 1b), we find that whereas

our MNL model’s estimated effects (like those of the authors’) yield no significant findings,

our BIMNL estimates for these two treatments present mean estimates that are each positive

and over double in size to those of the MNL model, and which are statistically significant in

the case of the phone treatment. This intuitively suggests that (i) phone treatments increase

an Independent’s probability of voting Democratic and (ii) the effects of liberal endorsements

on this (generally uninformed, nonpartisan) group are underestimated when routine nonvoters

are unaccounted for in one’s analysis. In line with Arceneaux and Kolodny (2009), we find no

significant effect of either treatment among Democratic identifiers (Figure 1c), a null finding

that we believe, like Arceneaux and Kolodny, may be attributable to the ceiling imposed by

high levels of initial Democratic candidate support among this group. Taken together, it is

not evident that liberal group endorsements are a net negative for Democratic candidate voter

support (as the authors’ original findings imply), as our estimates indicate that, if anything,

the net statistically distinguishable effect of these treatments is positive. Finally, one can also

observe consistently larger confidence intervals for the BIMNL estimates in Figure 1, which are

to be expected given that for the original BIMNL model, unlike the MNL model, one’s choice

estimates are estimated conditional on estimated probabilities of inflation.15

In sum, this replication provides evidence—in the form of model fit statistics and inflation

other variables to their means or modes. To ensure comparability to the authors’ reported results (Table 4, page
765) we report 90% one-tailed confidence intervals in these simulations, though the significant BIMNL findings
discussed below are also significant at the equivalent two-tailed threshold.

15And the additional stochastic component, and parameters, that this estimated inflation process entails.
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stage estimates—to suggest that the BIMNL model may outperform the MNL model in mod-

eling the heterogeneous population of abstainers within Arceneaux and Kolodny’s vote choice

dependent variable. In contrast to Arceneaux and Kolodny’s findings, our BIMNL replication

suggests that liberal interest group-directed phone and door-to-door canvassing endorsements

of PA Democratic House candidates now have a larger, but less precise, negative effect on

Republican-identifiers’ choice of voting for a Democratic candidate, and a positive (and in

the case of phone treatment, significant) effect on the likelihood of Democratic candidate vote

choice among Independents. In both cases, we believe that these differences are attributable to

the fact that, once completely disengaged voters have been excluded, the BIMNL model is bet-

ter able to estimate the effects of Arceneaux and Kolodny’s treatments upon those voters who

are susceptible to such interventions. Given the substantive magnitude of our BIMNL findings

for Independents, this replication has important theoretical and policy implications for interest

groups’ candidate endorsement tactics, a point to which we return in the conclusion.

Replication II

Our second application replicates a recent analysis of individuals’ 2004 U.S. presidential

vote choice (Campbell and Monson, 2008). In this study, Campbell and Monson evaluate the

interactive effects of (i) gay marriage ban (GMB) ballot initiatives and (ii) potential voters’

religious affiliations on an unordered polytomous dependent variable measuring survey respon-

dents’ stated 2004 vote choice of: Bush, Kerry, or abstention (the baseline category). Drawing

on a representative sample of approximately 1,500 individuals from a 2004 Election Panel

Study (EPS), Campbell and Monson ultimately find that the presence of GMBs increased mo-

bilization for Bush among evangelical Protestants but increased abstention levels (relative to

voting for either candidate) among secular voters. We provide detailed operationalizations for

these, and all other, covariates in our supplemental appendix.

While Campbell and Monson’s findings are insightful, we suspect that the same heteroge-

neous mixture of routine nonvoters and occasional nonvoters discussed above may be present
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in the baseline abstention category of the authors’ polytomous dependent variable. The EPS

survey likely includes substantial proportions of both types of nonvoters, given its nationally-

representative sample of potential voters, and given the extant literature on distinct nonvoter

types (summarized earlier). If this is the case, then the authors’ estimates may be misattribut-

ing routine nonvoting effects as having direct effects on vote choice due to heterogeneity in

their nonvoting subsample of respondents. We examine whether this is the case by replicating

Campbell and Monson’s primary specification using MNL and BIMNL models below.16

As above, our choice of BIMNL inflation stage covariates is limited to the variables avail-

able in Campbell and Monson’s study. We accordingly identify a number of plausible inflation

stage predictors from Campbell and Monson’s available covariates. First, we include education,

as it has proven to be a consistent predictor of voting behavior and political participation in past

research (Smets and van Ham, 2013). We posit that educated nonvoters will have higher likeli-

hoods of being temporary nonvoters. For similar reasons, we include the authors’ mobilization

index measure which is also anticipated to be a positive predictor of occasional, rather than

routine, nonvoting. We next add Campbell and Monson’s dichotomous indicator of individuals

reporting their religion as secular with the expectation that nonreligious individuals may also

be less active in other areas of associational life, such as politics or voting.17 Finally, we include

age, but omit female, given the inflation stage findings obtained in our earlier application.

The left portion of Table 2 reports estimated changes in the predicted probabilities of non-

inflation (i.e., of being an occasional nonvoter rather than routine nonvoter), given reasonable

changes in each of our inflation stage covariates.18 First, we find that a realistic increase in

education is associated with a small, but significant, positive increase in a nonvoter’s likelihood

of being an occasional, rather than routine, nonvoter, which is in line with our expectations.

Similarly, increases in an individual’s mobilization index also positively affect the likelihood
16Our (BI)MNL replications differ from Campbell and Monson in several respects. Most notably, Campbell and

Monson use an MNP model to estimate the effects of their covariates on 2004 vote choice, not a MNL model. The
authors also use robust standard errors, whereas we do not. Given that (i) this is a methods exercise and (ii) the
authors state that their main substantive results remain unchanged even when employing a MNL model (Campbell
and Monson, 2008, Footnote 13: 408), we do not believe our departures to be particularly problematic.

17For arguments to this effect, see, e.g., Verba et al. (1995); Jones-Correa and Leal (2001).
18Standard errors are calculated via parametric bootstraps with all other variables at their means or modes.
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of non-inflation. In contrast to our earlier application, age (now measured on a limited ordi-

nal scale) is also a positive predictor of occasional nonvoting—a departure we find somewhat

unsurprising given the different operationalizations and nonmonotonicities that likely underlie

this particular relationship. Finally, secularism is associated with a large (nine percent) and

significant decrease in the probability that a nonvoter is an occasional—rather than routine—

nonvoter, which is consistent with our expectation that nonreligious individuals are less likely

to be politically active on the whole.

[Insert Table 2 about here]

As the model fit statistics in the right portion of Table 2 reveal, we find only mixed support

for the BIMNL model’s “goodness of fit” in this application. In particular, two of our three

primary fit statistics favor the BIMNL model, while the third favors the MNL model. The

less accurate PRE and Vuong statistics are similarly split between the two models. These

inconclusive findings are relatively unsurprising given the low N for the study, but nevertheless

underscore the need to be cautious in drawing broader theoretical conclusions from the outcome

stage results presented below.

We next turn to the outcome stages of our MNL and BIMNL models. As before, the coef-

ficient estimates for our models’ respective estimation stages are reported in the supplemental

appendix. The present section compares our MNL and BIMNL derived first differences in pre-

dicted probabilities of votes for Bush and votes for Kerry,19 given reasonable changes in two

key outcome stage covariates: secularism and education. For our BIMNL estimated first dif-

ferences in predicted probabilities, we again hold the BIMNL’s inflation stage equation fixed at

pr(non-in f lation = 1) to facilitate comparisons of our “all respondents” MNL estimates to the

BIMNL model’s more specific estimated subset of “voters and occasional voters”. We report

these quantities of interest, along with 90% confidence intervals, in Figure 2.

[Insert Figure 2 about here]
19As above, each first difference is estimated relative to a (non-inflated) voter choosing to abstain, with all other

variables held to means or modes and the effects of our covariates on the other choice outcomes restricted to zero.
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In addition to identifying the abstention inducing effects of GMB among secular individ-

uals, Campbell and Monson’s reported estimates also suggest a puzzling finding, in that the

individual coefficient estimate for secularism is negative and significant within the “Vote Kerry

versus Abstain” equation. This implies that in states without GMB’s, secular individuals are

less likely (than mainline Protestant individuals) to vote for Kerry than to abstain. As Figure 2a

indicates, we find an equivalent effect in our MNL replication. However, once routine abstain-

ers are partitioned from the sample, our comparable BIMNL estimates reveal that this effect

dissapears, as the estimates are now statistically indistinguishable from zero. Our estimated

quantities of interest for a key control variable also highlights interesting differences between

the MNL and BIMNL estimates. Specifically, the quantities of interest in Figure 2b demon-

strate that a well known positive determinate of turnout, education, has no direct effect on vote

choice (relative to abstention), once its significant effects on the probability of abstention infla-

tion are accounted for—a finding that potentially alters how we interpret the moderating effects

of education within GOTV type mobilization efforts.

In sum, our second application further highlights the benefits of the BIMNL model over

the MNL model, but also underscores some potential challenges. While we obtained a num-

ber of theoretically consistent findings for the inflation stage of our BIMNL model—such as

those related to education, mobilization index, and secularism—our model fit statistics were

ambiguous as to whether the BIMNL did, in fact, provide a better model fit than a comparable

MNL model. Because such inconclusive findings are apt to occur in practice— especially when

applied to data sets with fewer than 2,000 observations (as was the case here)—we encourage

researchers to be cautious and to rely on theory when selecting between the BIMNL and MNL

model in such instances. These weak foundations notwithstanding, our outcome stage estimates

do suggest that the BIMNL model offers novel improvements in theory testing. Specifically,

the puzzling estimated effect for secularism among individuals’ propensities to vote for Kerry

dissipates once baseline inflation is accounted for, while the effect of education becomes more

nuanced.

22



Conclusion

Questions of individual vote choice, when applied via representative surveys of voting age

citizens, are apt to include heterogeneous mixtures of nonvoters. Extant research suggests that

one subset of these self-reported nonvoters will correspond to occasional nonvoters, who ab-

stain from voting in a specific election due to temporary factors such as short term economic

shocks, weather conditions, or personal factors. Yet, many other nonvoters are likely to be

routine nonvoters who, due to structural or personal reasons, have chosen to abstain from the

political process entirely. These nonvoters are thus largely immune to the short-term factors

affecting the occasional abstainers mentioned above. Ignoring this distinction can lead one to

conflate the estimated direct effect of both sets of determinants on nonvoting and, by implica-

tion, the factors affecting actual voters’ candidate choices in MNL models. Hence, it is im-

perative that public opinion scholars account for these disparate populations of nonvoters when

“did not vote/abstain” serves as the reference category in empirical models of vote choice.

This paper presents a new discrete choice estimator—the BIMNL model—to allow re-

searchers to more accurately account for this variation in populations of nonvoters. After

deriving this model, we demonstrate that ignoring baseline-choice category inflation within

empirical studies of vote choice can potentially affect one’s parameter estimates and theoretical

conclusions. Here, our replication findings offer new theoretical insights into the determinants

of individual vote choice in American elections. For instance, our first application demonstrates

that the effects of a liberal interest group’s Democratic candidate endorsement may in fact pro-

duce a net positive, rather than a net negative, outcome for Democratic candidates across all

potential voters, once routine nonvoters are accounted for in the BIMNL model. Similarly,

our second application suggests that a number of commonly understood direct predictors of

turnout and vote choice, such as education and secularism, may instead primarily affect these

outcomes through their effects on routine versus occasional nonvoting, rather than through any

direct effect on individuals’ active decisions to vote or abstain in a given election.

This study can be extended in several directions. As mentioned above, the BIMNL model
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could be generalized to the MNP setting. Notwithstanding the MNP concerns raised earlier,

such an extension would afford researchers the opportunity to properly account for baseline

category inflation in instances where they believe their polytomous dependent variable to be

both unordered and in broader violation of the IIA assumption. Furthermore, a BIMNP model

could also provide a feasible framework for the provision of correlated error terms between the

two estimation stages of an inflated polytomous choice model (under assumptions of bivariate

normality). Allowances for correlated disturbances between inflation and outcome equations,

although challenging for estimation and identification, have been shown to be extremely useful

to both theory and estimation within inflated ordered probit (IOP) estimators (Harris and Zhao,

2007; Bagozzi et al., 2014; Bagozzi and Mukherjee, 2012), as well as in applications of in-

flated probit estimators (e.g., Xiang, 2010), and thus would likely be of great interest to survey

researchers within the polytomous choice setting as well.

The insights presented above may also facilitate future research within the area of political

behavior by allowing researchers to better test and develop theories of routine and occasional

nonvoting. As such, our paper has important implications for political behavior research both

within academia as well as in the more applied settings of political campaigns and activism. By

accounting for routine nonvoters, the BIMNL model provides more nuanced estimates of how

various factors affect the voting behavior of the very individuals that campaigns and scholars

(arguably) want to understand and motivate the most: those who have voted in past elections but

not necessarily routinely. It is this population of disproportionately nonpartisan, uninformed,

and heuristic-dependent (non)voters who, if effectively mobilized, can have a substantively

large effect on an electoral outcome. As the 2008 election demonstrated, the ability to en-

courage voter turnout among populations of Americans with inconsistent voting records (e.g.,

young voters between the ages of 18-29) can significantly bolster support for one party, or can-

didate, over another. Thus, accurately understanding how GOTV activities differentially affect

occasional versus routine nonvoters could be crucial for many political campaigners, interest

organizations, and scholars of political behavior.
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Table 1: Inflation Stage & Model Fit Results for 2006 PA Vote Choice

First Differences in Pr(Occasional Nonvoter) Model Fit Statistics
Inflation Covariate MNL BIMNL
0→ 1 ∆ in Vote 2004 0.39 lnL -2110.59 -2069.97

(0.18↔ 0.60)
Vuong X

53→ 71 ∆ in Age −0.05
(−0.08↔−0.02) PRE X

0→ 1 ∆ in Female 0.01 AIC X
(−0.02↔ 0.04)

BIC X
2→ 4 ∆ in House Size 0.01

(−0.02↔ 0.04) LR X

0→ 1 ∆ in District 156 0.06
(0.02↔ 0.10)

Changes in non-binary variables ≈ mean +1SD changes. Values in parentheses are 90% confidence intervals.
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Table 2: Inflation Stage & Model Fit Results for 2004 Presidential Vote Choice

First Differences in Pr(Occasional Nonvoter) Model Fit Statistics
Inflation Covariate MNL BIMNL
5→ 7 ∆ in Education 0.01 lnL -553.50 -545.27

(0.001↔ 0.03)
Vuong X

1→ 2 ∆ in Mobilization 0.02
(0.003↔ 0.06) PRE X

2→ 3 ∆ in Age 0.01 AIC X
(0.001↔ 0.04)

BIC X
0→ 1 ∆ in Secular −0.09

(−0.28↔−0.001) LR X

Changes in non-binary variables ≈ mean +1SD changes. Values in parentheses are 90% confidence intervals.
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Figure 1: Effects of Phone & Canvassing on Predicted Probabilities of 2006 PA Vote Choice

(a) Republicans
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(b) Independents
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(c) Democrats
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Figure 2: Effects of Selected Covariates on Predicted Probabilities of 2004 Vote Choice

(a) 0→ 1 change in Secular (When GMB=0)
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(b) 5→ 7 change in Education
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