Simulating Central-Force
Problems

6.1 Stating the general problem and a
possible line of attack

In Chapter 4, we learned how we could use an iterative procedure
(called the Euler method) to advance the position of an object in
small increments based on its current velocity. This allowed us to
numerically obtain x(t) given v(t). In other words, we performed
a numerical integration: given the known velocity-time graph, we
generated the position-time graph.

The task in many physics problems is slightly different, however.
Very often, we know the force acting on an object at all points in
space, and we would like to somehow calculate the object’s trajec-
tory in response to the forces it encounters. How do we do that?

So, let’s assume that we know the force that is acting on an object as
a function of the object’s location. What this means is that no matter
where the object happens to be, we can calculate the force that it
experiences there. Mathematically speaking, what we are given is
the force-function, F(7). This notation communicates that we can
evaluate a force vector, F , by inserting a position vector, 7, into a
function. Mathematicians would call such a function a map from R3
to R3. A good example are the so-called central-force problems, such
as the gravitational force a comet feels in the vicinity of the sun.

We also know that the force on the object is related to the accelera-
tion of the object via Newton’s second law:

F =ma (6.1)

34 CHAPTER 6 SIMULATING CENTRAL-FORCE PROBLEMS

This means that simply dividing the force-function by the object’s
mass gives us the acceleration function a(7).

Now that we have the acceleration, how do we get the trajectory?
Recall that we faced a somewhat similar task in Chapter 4. There we
knew the velocity and were able to compute the position. But now
we are one step further removed. We know the acceleration, not
velocity. What’s more, we know the acceleration not as a function
of time, but as a function of position.

You may know that in these types of problems, in order to compute
the object’s trajectory, we must know how the object was initialized.
At what position was it released and what velocity did it have at that
moment? These two things must be known to us if we are to find
the unique trajectory - they are called the initial conditions.

So here is the basic idea. Let start from this position and velocity in
our code, call them: &7 and v;. From Z; we can compute the force
at that location and thus the acceleration a@;. Using this a1, we now
update the velocity. Here we make use of the formula for average
acceleration,

. AT

(lcwg = E (62)

As the time interval gets very small (and, in the limit, infinitesi-
mal), the average acceleration becomes the instantaneous acceler-
ation, and so,

Uy = U1 + a *x At. (6.3)

This completes the second step.

In the third and final step, we now use this new velocity to update
the position, using the vector-verson of Equation (4.2), namely:

To = 1 + s * AL (6.4)

6.1 STATING THE GENERAL PROBLEM AND A POSSIBLE LINE OF ATTACR5

Now that we have computed the new position vector Z5, we can
start the whole procedure over again by first computing the new
force and acceleration (ﬁg, as), then the new velocity (v3), and then
finally the new position (Z3). Schematically, we are proceeding in
steps given by the following flow chart:

Current : - Force ‘ Acceleration

position
Current
4— -
velocity

Next position - Next velocity

In summary, we basically apply the Euler method twice, once for
the velocity and then for the position. Notice also that we update
the velocity first and then use the new velocity to update position
second. It turns out that this order of operation is often superior to
the reverse order in terms of computational accuracy. It is called the
Euler-Cromer method .

TA. Cromer, Stable solutions using the Euler Approximation, American Journal of Physics,
49, 455 (1981).

36 CHAPTER 6 SIMULATING CENTRAL-FORCE PROBLEMS

6.2 A first example: The mass-spring problem

To illustrate the method, let’s get our feet wet with a relatively sim-
ple problem - a mass on a horizontal spring. All we have to remem-
ber is Hooke’s law for ideal springs,

F(x) = —kx, (6.5)

where £ is called the spring constant which corresponds to the stiff-
ness of the spring, and = represents the amount of stretch (if posi-
tive) or compression (if negative) of the spring. We should appreci-
ate this formula as the one-dimensional version of F'(7') from before.
Dividing Equation (6.5) by the mass of the object that we attach to
the end of the spring yields the object’s acceleration.

Let’s look at the basic VPython code, shown in Figure 6.1, to see
how the Euler-Cromer method gets implemented in practice here.
The basic steps (outlined in the flowchart in the previous section) are
contained in lines 24 through 27. Line 28 is not absolutely necessary,
but it is included for the purpose of making position and velocity-
time graphs.

Notice also how easy it is in VPython to draw a spring-mass setup
- we basically select a sphere for the end-mass and a helix for the

6.3 EXERCISES 37

W00~ O N = L —

15

Ef
18
19
20
21
22
23
24
25
26
27
28

GlowScript 2.7 VPython

gl=graph(width=400, height=250)
xDots=gdots(color=color.green, graph=gl)
vDots=gdots(color=color.red,graph=g1)
eDots=gdots(color=color.blue, graph=g1)

obj=sphere(pos=vector(-1,0,0),radius=0.5,color=color.red)
spring = helix(pos=vector(-5,0,0), axis=vector(4,0,0), radius=e.5)
wall=box(pos=vector(-5.5,0,0),length=0.5, height=2, width=0.25)

t=0; dt=0.01
K==

v=0

k=1; m=1

while t<25}
rate(200)
obj.pos=vector(x,0,0)
spring.axis=vector(x+5,0,0)
xDots.plot(t,x)
vDots.plot(t,v)

F=-k*x
a=F/m
v=v+axdt
x=x+vxdt
t=t+dt

Figure 6.1: The basic code simulating a mass at the end of a spring

spring. The only thing we have to take care of is to deform the helix
in dependence upon the position of the end-mass.

6.3 Exercises

« Run the program in Figure 6.1 and examine the position-time
graph. What does the graph look like? What math function
does it seem to follow? What about the velocity-time graph?

« What can you say about the relationship between the
position-time graph and the velocity-time graph. Is there

38

CHAPTER 6 SIMULATING CENTRAL-FORCE PROBLEMS

a phase difference between them, and if so, approximately
what is it?

Find the place in the code where the initial conditions (zg
and vg) are specified. Try running the program with a
few different sets of initial conditions. Does the period of
oscillation seem to depend on this choice?

Find the place in the code where system’s physical parameters
are specified, namely the spring constant and mass. Change
one of these parameters at a time, and observe qualitatively
how it changes the period of oscillation.

What if you double (or triple) both the mass and the spring
constant? Do the graphs change?

Are your observations above consistent with the well-known
formula for the period of oscillation, 7, given below?

m
T =97, /2
™k

6.4 A second example: Projectile motion with

air drag

As a second example - one that is slightly more difficult while also

showing off some of VPython’s strengths - let us consider a pro-

jectile launched through the atmosphere. Here we don’t want to

neglect air drag, as is customary in introductory physics, and as we
did in Chapter 5. Instead, we recall that a good formula for the drag

6.4 A SECOND EXAMPLE: PROJECTILE MOTION WITH AIR DRAG 39

force (under certain assumptions) is given by,
- 1
Fp = 5pACpv* (1), (6.6)

where p is the density the medium (here, air), A the cross-sectional
area of the projectile, and C'p the coefficient of drag. We see that
the magnitude of the drag force is proportional to the square of the
speed, and that its direction is opposite to the motion. This latter
point is mathematically represented by the last term in Equation
(6.6), where 0 is the unit vector in the direction of instantaneous
motion, or ¥ = ¥/ |v|.

You might be thinking that the changing direction of the drag force
would be difficult to “handle”, and ordinarily you would be right.
In fact, this facet of the problem coupled with the quadratic depen-
dence on speed makes this problem impossible to solve in closed
form with pencil and paper. So here we now encounter our first in-
stance of a problem that has no closed-form analytical solution and
where we rely on a computer to give us the solution numerically.

We said “ordinarily” because within the VPython environment there
exist high-level commands that will make this problem substantially
easier. Particularly nice are the built-in vector operations that in-
clude easy evaluations of dot and cross-products between vectors, as
well as evaluations of a vector’s magnitude and direction. For our
purposes here, we want to highlight two operations we can perform
on a vector A:

« mag(A) and mag2(A), where the output yields the length and
length-squared of that vector, respectively.

« A.hat, which produces from the vector A its unit vector (by
dividing it by its length). This syntax treats the directionality
(given by the unit vector) as a property of the vector. It is just
like any other property of a vector, such as A.x, which yields
the x-component of the vector A.

40 CHAPTER 6 SIMULATING CENTRAL-FORCE PROBLEMS

Armed with these commands, implementing Equation (6.6) should
seem a lot more straightforward. Let’s look at the basic code first
(see Figure 6.2).

GlowScript 2.7 VPython

scene. center=vector(58,20,-18)
scene.fov=pi/2.5

box{pos=vector(50,8,0),size=vector(100,8.1,5),color=color.yellow)

e

ball=sphere(pos=vector(@,9,8), radius=8.2, color=color.green, make_trail=True}

D00 = O N fa L b —
—

10 speed=65

11 angle=45/188#pi

12

13 wvx=speed*cos{angle)

14 vy=speed*sin{angle)

15 ball.v=vector(vx,vy,@)

16

17 m=2.0; rad=0.2; g=9.8

18 dt=6.801

19 rhe=1.2; C=0.5; Area=pi#rad#*2

20

21 while ball.pos.y>-8.81:

22 rate(468)

23 F=vector(®,-m*g,0) - 8.5xCxrhoxArea*mag2(ball.v)*ball.v.hat
24 a=F/m

25 ball.v = ball.v + a*dt

26 ball.pos = ball.pos + ball.vxdt

27 print("The range was:", ball.pos.x, "meters.")

Figure 6.2: The basic code simulating a the trajectory of a projectile
with air drag

One thing to point out before we delve in is that everything here is
in Sl-uits. This means that whenever you encounter a number (as-
signed to a variable), that number should be considered to have the
appropriate SI-unit. So, for example, Line 10 states: speed=10. This
means that we set the speed of the projectile to 10 m/s. Similarly,
Line 12 defines the density, rho = 1.2, as 1.2 kg/m?> (the density of
air). Since the Sl-unit system is closed, any calculations that the
code performs will automatically be in the appropriate SI-unit for
that variable.

We can start by looking at Lines 13 through 15. Here we first com-
pute the x- and y- components of the velocity vector from the speed

6.4 A SECOND EXAMPLE: PROJECTILE MOTION WITH AIR DRAG 41

and launch angle. Line 15 is interesting: ball.v = vector(vx,vy,0).
How should we interpret this statement? First, it is an assignment.
The velocity vector on the right of the equal sign is assigned to a
quantity called ball.v. The notation on the left side of the equal sign
suggests that v is a property of ball. In fact, with this statement we
define the velocity to be a property of the object we introduced ear-
lier in the code and called ball. So now in addition to the properties
pos, size, and color by virtue of the ball being defined as a sphere,
we have added the property v.

What is interesting is that ball.v has itself all the properties that a
vector can have, and so, for instance ball.v.x would refer to the x-
component of the ball’s velocity vector. Similarly, ball.v.hat would
give the unit vector in the direction of motion.

Finally, let’s examine Line 23:
F=vector(0,-m*g,0) - 0.5*C*rho*Area*mag2(ball.v)*ball.v.hat.

You should recognize this as the net force acting on the projectile.
The first part is the gravitational force near the surface of the earth
and the second is the drag force. Notice that VPython automatically
adds these two parts as vectors.

When you run the program you should get something like the fol-
lowing:

42 CHAPTER 6 SIMULATING CENTRAL-FORCE PROBLEMS

The range was: 79.6038 meters.

Notice that the code returns the approximate range of the projectile
in the print statement. Also observe the shape of the trajectory. It
clearly deviates from the parabola - the highest point in the trajec-
tory is not reached at the horizontal half-way point, and the descent
is steeper then the ascent.

6.5 Exercises

« Run the program with different launch angles and determine
the angle that gives you the largest range. Without air-drag,
it is fairly easy to prove that that angle is 45 degrees. What is
it now?

« Let’s play a game. The object is to make the range as close to
100 meters as possible. You are only allowed to change the
initial launch angle and speed. What combination gets you
closest to 100 meters? There may be more than one solution.

6.6 THIRD EXAMPLE: TRAJECTORIES OF PLANETS AND COMETS 43

« Instead of modifying the initial conditions, as in the previous
exercise, now examine the role of the projectile properties.
The shape of the projectile enters the problem via the drag
coefficient Cp; it can vary from as low as 0.05 (for a very
aerodynamic shape) to about 1.0 (for a cube). Adjust first the
mass and then the drag coefficient, and describe how these
two parameters affect the trajectory.

« Add to the code given above so that you can get two trajecto-
ries on screen simultaneously. These two trajectories should
correspond to two different projectiles (differentiated either
by mass or drag coefficient).

6.6 Third Example: Trajectories of Planets
and Comets

Our final example is also the most famous in the sense of historical
significance - the Keplerian orbits of planets and comets around the
sun. The perfectly circular orbit is one special solution to Newton’s
second law. This is usually demonstrated in introductory physics
by setting the formula for the centripetal force equal to the gravita-
tional force,

muv? B GMm

: 6.7
r r2 (6.7)

We set them equal because gravitation actually provides us with the

centripetal force necessary for moving in a circle. Solving Equation
(6.7) for v yields the orbital speed as a function of the orbital radius,

v=4— (6.8)

44 CHAPTER 6 SIMULATING CENTRAL-FORCE PROBLEMS

Proving that elliptical orbits also satisfy the governing equations is
much more difficult and usually reserved for an junior-level course
in classical dynamics. The same goes for parabolic and hyperbolic
orbits - the remaining cone sections. However, we can explore those
orbits numerically using VPython without any advanced knowledge
of physics.

Imagine for a moment that we had the power to launch a comet at a
particular distance from the sun, call it 7y, as well as with a certain
initial velocity. It is not hard to see that if we chose a velocity of
zero, the comet would head straight for the sun; it would accelerate
in a straight line toward the sun and be swallowed up by it. In fact,
many people unfamiliar with physics think that this scenario is the
only one possible and that circular orbits are only feasible due to
other planets or stars in the picture, or by some other magic (which
is, of course, ludicrous).

But what if we chose an initial velocity at right angles to the line
connecting the comet to the sun? We would at least have a chance
of obtaining a circular orbit, but only if the speed in this direction
matched Equation (6.8). Indeed, this set of initial conditions would
produce a circular orbit.

Now imagine what would happen if the speed that we impart to
the comet at right angles did not match that speed. What if it were
much smaller or larger than what Equation (6.8) demands? It stands
to reason that we would then not recover a circular orbit, but what
do we get instead? Let’s find out by running a numerical simulation!

The basic code is surprisingly short. In this version we decided for
simplicity to set the universal gravitational constant to 1, but you
can change it to the actual value in Sl-units. In that case, however,
you should also make the masses and distances involved realistically
large. The basic code, then, is shown in Figure 6.6. Feel free to make

6.7 EXERCISES 45

the parameters more realistic; the mass ratio that appears here is
only 1:100, for instance. Nonetheless, we can use this simplified
code to explore the possible orbits.

=

GlowScript 2.7 VPython

2

3 sphere(pos=vector(®,0,8),radius=1,color=color.yellow)
4 planet=sphere(pos=vector(10,0,8), radius=0.2,color=color.green, make_trail=True]
6 planet.v=vector(®,1.5,8)

i w1 6=

8 k=100

§ dt=0.6e85

18

1 while True:

12 rate(480)

3 r=planet.pos

14 F=-G#M*m#r .hat/(mag2(r))

15 a=F/m

16 planet.v=planet.v + axdt

17 planet.pos=planet.pos + planet.v*dt

Figure 6.3: The basic code simulating gravitational orbits.

6.7 Exercises

« Examine the code provided, make sure that you understand
what each line does, and annotate.

« Use Equation (6.8) with the parameters given in the code to
find the orbital speed for a circular orbit. Enter this speed as
the starting speed in the code at the appropriate place. Do
you get a circular orbit?

« If you doubled the initial distance of the comet from the sun,
what speed would be necessary now for a circular orbit? Try
it in the code.

46

CHAPTER 6 SIMULATING CENTRAL-FORCE PROBLEMS

Now select a starting speed that is smaller than the one
you chose above. Observe the kind of orbit you obtain now.
Does the orbit trace out the same path after each revolution?
Astronomers call this scenario a closed orbit.

What can you say about the orbital speed? Is it constant or
does the comet appear to speed up at certain points? Explain!

If you make the initial speed too small, you will see that
the simulation eventually breaks down and returns non-
sensical results. Why is that and what can you adjust to
remedy the situation? [Hint: When the comet gets very
close to the sun, the acceleration it experiences becomes very
large. What line in the code is going to be adversely affected?]

Let’s be even more creative. Instead of the normal law of uni-
versal gravitation that decreases with the square of distance,
what would happen in a universe ruled by a gravitational
force proportional to 1/7? Make this change in the code, and
start with a circular (or near circular) orbit by using Equation
(6.7) but with the new gravity to solve for orbital speed.

Now lower the speed and observe the orbits that result. What
is the most obvious qualitative difference about the orbits that
we get now in this alternative universe?

	Dickinson College
	Dickinson Scholar
	2019

	06 Simulating Central-Force Problems
	W.A. Morgan
	L.Q. English

	VPythonBook 20190816.pdf

