
Research Article
Computational Comparison of Exact Solution Methods for 0-1
Quadratic Programs: Recommendations for Practitioners

Richard J. Forrester and Noah Hunt-Isaak

Dickinson College, Carlisle, Pennsylvania, USA

Correspondence should be addressed to Richard J. Forrester; forrestr@dickinson.edu

Received 28 January 2020; Accepted 12 March 2020; Published 26 April 2020

Academic Editor: Lucas Jodar

Copyright © 2020 Richard J. Forrester and Noah Hunt-Isaak. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

This paper is concerned with binary quadratic programs (BQPs), which are among the most well-studied classes of nonlinear
integer optimization problems because of their wide variety of applications. While a number of different solution approaches
have been proposed for tackling BQPs, practitioners need techniques that are both efficient and easy to implement. We revisit
two of the most widely used linearization strategies for BQPs and examine the effectiveness of enhancements to these
formulations that have been suggested in the literature. We perform a detailed large-scale computational study over five
different classes of BQPs to compare these two linearizations with a more recent linear reformulation and direct submission of
the nonlinear integer program to an optimization solver. The goal is to provide practitioners with guidance on how to best
approach solving BQPs in an effective and easily implemented manner.

1. Introduction

Binary quadratic programs (BQPs) are one of the most well-
studied classes of nonlinear integer optimization problems.
These problems appear in a wide variety of applications
(see [1, 2] for examples) and are known to be NP-hard. There
are a number of different solution techniques that have been
proposed for BQPs, including heuristics and exact solution
methods. Given the difficulty of implementing and maintain-
ing custom algorithms, the most commonly used exact solu-
tion method for BQPs involves linearizing the nonlinear
problem and subsequently submitting the equivalent linear
form to a standard mixed-integer linear programming
(MILP) solver. Interestingly, the majority of commercial
MILP solvers have been updated to handle the direct submis-
sion of a BQP, which provides an attractive solution
alternative.

In this paper, we revisit two of the most widely used lin-
earization strategies for BQPs: the standard linearization [3]
and Glover’s method [4]. There have been a number of

proposed enhancements to these methods, but to the best
of our knowledge, there has not been a comprehensive study
to determine the optimal manner in which to apply these lin-
earization techniques. In order to investigate these enhance-
ments, we utilize five different classes of BQPs from the
literature (the unconstrained BQP, the multidimensional
quadratic knapsack problem, the k-item quadratic knapsack
problem, the heaviest k-subgraph problem, and the quadratic
semi-assignment problem) and three different MILP solvers
(CPLEX, GUROBI, and XPRESS). We also make compari-
sons to the more recent linearization strategy of Sherali and
Smith [5] and the direct submission of the BQP to the solver.
The goal of this paper is to provide practitioners with sugges-
tions for solving BQPs in an efficient and easily implemented
manner. Note that our work is similar to that of [6, 7] who
also perform computational studies of different linearization
strategies for BQPs. However, our focus is not only on com-
paring different linearizations but also on how enhancements
to the standard linearization and Glover’s method affect
algorithmic performance.

Hindawi
Journal of Applied Mathematics
Volume 2020, Article ID 5974820, 21 pages
https://doi.org/10.1155/2020/5974820

https://orcid.org/0000-0001-9884-8533
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5974820


The general formulation of a BQP is given by

BQP : maximize 〠
n

i=1
cixi + 〠

n

i=1
〠
n

j=1
j≠i

Cijxixj : x ∈X, x binary

8>>><
>>>:

9>>>=
>>>;
,

ð1Þ

where cj and Cij are the linear and quadratic cost coefficients,
respectively, and X is a polyhedral set representing the feasi-
ble region. For notational ease, we henceforth let the indices i
and j run from 1 to n unless otherwise stated. Note that for
each binary variable, x2i = xi, and thus, Cii can be incorpo-
rated into the linear term ci without loss of generality. Fur-
thermore, note that the overall cost associated with the
product xixj is Cij + Cji. Therefore, even if Cij and Cji are
modified so that their sum is unchanged, the problem
remains the same. The two most common quadratic coeffi-
cient representations in the literature are to either assume
Cij = Cji for all i ≠ j (so that the quadratic coefficient matrix
C is symmetric) or assume Cij = 0 for all i ≥ j (so that the qua-
dratic coefficient matrix C is upper triangular); both of which
can be assumed without loss of generality. For our purposes,
we will explicitly keep both terms Cijxixj and Cjixjxi. Note
that there is no assumption that C is a negative-
semidefinite matrix, and therefore, the continuous relaxation
of problem BQP is not necessarily a convex optimization
problem. However, with regards to the linearizations, the
concavity of the objective function is irrelevant as it is rewrit-
ten into a linear form.

2. Linearizations

One of the most widely used techniques for optimizing a
BQP is to utilize a linearization step that reformulates the
nonlinear program into an equivalent linear form through
the introduction of auxiliary variables and constraints. The
linearized model can then be submitted to a standard MILP
solver. While the size and continuous relaxation strength of
a reformulation certainly play a role in the performance of
a linearization when submitted to an MILP solver, it is not
always possible to infer which formulation will have a better
performance. Indeed, the use of preprocessing techniques,
cutting planes, heuristics, and other enhancements makes it
challenging to predict how two linearizations will compare
computationally.

In this section, we review two of the most well-known lin-
earization strategies and consider modifications that can
affect their computational performance. In addition, we
describe the more recent linearization strategy of Sherali
and Smith [5].

2.1. Standard Linearization. A standard method to linearize a
BQP, due to Glover andWoolsey [3], is to replace each prod-
uct xixj in the objective function with a continuous variable
wij. In order to simplify the presentation, we first rewrite
the objective function of BQP as

〠
n

i=1
cixi + 〠

n−1

i=1
〠
n

j=i+1
Cij′xixj, ð2Þ

where Cij′ = Cij + Cji for all ði, jÞ with i < j, which we can do
without loss of generality. We now define the standard line-
arization of BQP below.

STD : maximize〠
n

j=1
cjxj + 〠

n−1

i=1
〠
n

j=i+1
Cij′wij: ð3Þ

subject to

wij ≤ xi ∀ i, jð Þ, i < j, ð4Þ

wij ≤ xj ∀ i, jð Þ, i < j, ð5Þ

wij ≥ xi + xj − 1 ∀ i, jð Þ, i < j, ð6Þ

wij ≥ 0 ∀ i, jð Þ, i < j, ð7Þ

x ∈X, x binary: ð8Þ
Note that (4)–(7) enforce that wij = xixj for all binary x.

While this linearization method is straightforward, it has
the disadvantage that it requires the addition of nðn − 1Þ/2
auxiliary variables and 4nðn − 1Þ/2 auxiliary constraints.

As noted in [8], we can reduce the number of auxiliary
constraints by using the sign of Cij′ . Let C− = fði, jÞ: Cij′ < 0g:
and C+ = fði, jÞ: Cij′ > 0g. Then, we can omit the constraints
(4) and (5) bounding wij from above for ði, jÞ ∈ C−, and we
can omit the constraints (6) and (7) boundingwij from below
for ði, jÞ ∈ C+, as these will be implied at optimality. We refer
to this reduced form as STD′ and note that the continuous
relaxation of STD′ may potentially be weaker than that of
STD′.

This leads us to the first question that we would like to
address:

Question 1:When applying the standard linearization to
a BQP, should you reduce the size of the formulation based
on the sign of the quadratic objective coefficients? That is,
which reformulation, STD or STD′, provides a better perfor-
mance when submitted to a standard MILP solver?

We will address this question in our computational
study.

2.2. Glover’s Linearization. A more compact linearization
method is due to Glover [4]. Given problem BQP, this
method replaces each xjð∑n

i=1,i≠jCijxiÞ) found in the objective
function with a continuous variable zj and uses four linear
restrictions to enforce that zj = xjð∑n

i=1,i≠jCijxiÞ. Specifically,
the Glover linearization is as follows.

G1 : maximize〠
n

j=1
cjxj + 〠

n

j=1
zj ð9Þ

2 Journal of Applied Mathematics



subject to

zj ≤U1
j xj ∀ j, ð10Þ

zj ≥ L1j xj ∀ i, ð11Þ

zj ≤ 〠
n

i=1
i≠j

Cijxi − L0j 1 − xj
� �

 ∀ j, ð12Þ

zj ≥ 〠
n

i=1
i≠j

Cijxi −U0
j 1 − xj
� �

 ∀ j, ð13Þ

x ∈X, x binary ð14Þ
For each j, U1

j and U0
j are upper bounds on ∑n

i=1,i≠jCijxi,

while L1j xj and L0j xj are lower bounds on ∑n
i=1,i≠jCijxi.

Problems BQP and G1 are equivalent in that, given
any binary x, constraints (10)–(13) ensure that zj = xj
ð∑n

i=1,i≠jCijxiÞ) for each j. Observe that this formulation
only requires the addition of n (unrestricted) auxiliary
continuous variables and 4n auxiliary constraints and is
therefore considerably more compact than the standard
linearization.

As noted earlier, the two most common representations
of the quadratic objective coefficients Cij in the literature
are to either assume Cij = Cji for all i < j (so that the quadratic
coefficient matrix C is symmetric) or assume Cij = 0 for all
i ≥ j (so that the quadratic coefficient matrix C is upper
triangular); both of which can be assumed without loss
of generality. While the continuous relaxation strength of
STD and STD′ are not affected by the choice of objective
function representation, the relaxation value of G1 is
dependent on the manner in which the objective function
of a BQP is expressed as shown in [9, 10]. This follows
from the fact that the quadratic objective coefficients Cij

do not appear in the auxiliary constraints of STD or
STD′, whereas they do appear in those of G1. Moreover,
if the quadratic coefficient matrix is upper triangular, then
the variable z1 can be removed from G1 along with the
associated constraints in (10)–(13). To see this, note that
when C is upper triangular, (10)–(13) ensure that z1 = x1
ð∑n

i=1,i≠nCi1xiÞ = 0 because Cij = 0 for all i ≥ j. Thus, when
the quadratic coefficient matrix is upper triangular,
Glover’s formulation only requires the addition of n − 1
auxiliary variables and 4ðn − 1Þ auxiliary constraints. Fur-
thermore, when C is upper triangular, the auxiliary con-
straints of G1 are less dense than when C is symmetric,
which may provide a computational advantage when submit-
ted to an MILP solver. This leads us to our next question,
which we will address in our computational study.

Question 2: When formulating Glover’s formulation,
should you represent the quadratic objective coefficient
matrix C in upper triangular or symmetric form?

The bounds within G1 can be computed in a number of
different ways. As originally suggested in [4], for each j, they
can easily be computed as

L1j = L0j = 〠
n

i=1,i≠j
Cij<0

Cij andU1
j =U0

j = 〠
n

i=1,i≠j
Cij>0

Cij: ð15Þ

As shown in [9], stronger bounds that take into consider-
ation the feasible region can be computed as

Lpj =min 〠
n

i=1
i≠j

Cijxi : x ∈X, xj = p

8>>>><
>>>>:

9>>>>=
>>>>;

and

Up
j =max 〠

n

i=1
i≠j

Cijxi : x ∈X, xj = p

8>>>><
>>>>:

9>>>>=
>>>>;

ð16Þ

for p ∈ f0, 1g. These bounds could potentially be made even
tighter by enforcing x binary so that

Lpj =min 〠
n

i=1
i≠j

Cijxi : x ∈X, xj = p, x binary

8>>>><
>>>>:

9>>>>=
>>>>;

and

Up
j =max 〠

n

i=1
i≠j

Cijxi : x ∈X, xj = p, x binary

8>>>><
>>>>:

9>>>>=
>>>>;
:

ð17Þ

While the continuous relaxation of G1 could be poten-
tially tightened by strengthening the values of the U1

j , U
0
j ,

L1j , and L0j bounds within the formulation, we need to take
into consideration the amount of computational effort
required to find the bounds. This leads us to our third
question.

Question 3: With regards to the overall computational
effort to formulate and solve problem G1 to optimality using
an MILP solver, should we compute the bounds U1

j , U
0
j , L

1
j ,

and L0j using (15), (16), or (17)?
As noted in [11], we can reduce the size of G1 by remov-

ing the constraints (11) and (13) that bound zj from below
because of the maximization objective and the fact that the
zj terms do not appear elsewhere in the problem. Thus,

3Journal of Applied Mathematics



problem G1 can be written more concisely as the modified
Glover G2:

G2 : maximize〠
n

j=1
cjxj + 〠

n

j=1
zj ð18Þ

subject to

5ð Þ, 7ð Þ
x ∈X, x binary:

ð19Þ

Interestingly, problem G2 only requires 2n auxiliary con-
straints as opposed to the 4n required for G1, but G2 will
have the same continuous relaxation strength as G1.

Our next question to be addressed in the computational
study is as follows.

Question 4: How do formulations G1 and G2 compare
when submitted to an MILP solver?

It turns out that we can further reduce the number of
structural constraints in G2 through the substitution of vari-
ables sj =U1

j xj − zj or sj =∑i≠jCijxi − L0j ð1 − xjÞ − zj for all j,
which express the variables zj in terms of the slack variables
to the inequalities (10) and (12), respectively (see [11]). Upon
performing the first substitution, we obtain G2a:

G2a : maximize〠
n

j=1
cjxj + 〠

n

j=1
U1

j xj − sj
� �

ð20Þ

subject to

sj ≥ 0 ∀ j,

sj ≥ U1
j − L0j

� �
xj − 〠

n

i=1
i≠j

Cijxi + L0j ∀ j,

x ∈X, x binary:

ð21Þ

The second substitution yields G2b:

G2b : maximize〠
n

j=1
cjxj + 〠

n

j=1
〠
n

i=1
i≠j

Cijxi − L0j 1 − xj
� �

− sj

0
BBB@

1
CCCA

ð22Þ

subject to

sj ≥ 〠
n

i=1
i≠j

Cijxi − U1
j − L0j

� �
xj − L0j ∀ j,

sj ≥ 0 ∀ j,

x ∈X, x binary:

ð23Þ

Note that both G2a and G2b only require n (nonnega-
tive) auxiliary variables and n auxiliary constraints, yet they

both have the same continuous relaxation strength as G1
and G2. This leads us to our next question:

Question 5: Is it advantageous to perform the substitu-
tion of variables to reduce problem G2 to G2a or G2b when
submitting the model to an MILP solver? That is, how do for-
mulations G2, G2a, and G2b compare when submitted to an
MILP solver?

2.3. Sherali-Smith Linear Formulation. A more recent linear-
ization was introduced by Sherali and Smith [5]. This method
converts BQP to the linear form below.

SS : maximize〠
n

i=1
si + 〠

n

i=1
ci + Lið Þxi ð24Þ

subject to

yi = 〠
n

j=1
Cijxj − si − Li ∀ i, ð25Þ

yi ≤ Ui − Lið Þ 1 − xið Þ ∀ i, ð26Þ
si ≤ Ui − Lið Þxi ∀ i, ð27Þ
yi ≥ 0 ∀ i, ð28Þ
si ≥ 0 ∀ i, ð29Þ
x ∈X, x binary: ð30Þ

For each i, Ui and Li are upper and lower bounds, respec-
tively, on ∑n

j=1,j≠iCijxj, and can be computed in a similar
fashion as in (15), (16), or (17). However, based upon prelim-
inary computational results, we will construct SS using the
bounds computed as in (16). Note that the authors of [5]
actually introduced three formulations, called BP, �BP, and
BP-strong, which all consider instances of BQP that include
quadratic constraints. However, each of these three formula-
tions is equivalent to SS for BQP. After performing the sub-
stitutions suggested by constraints (25), SS increases the
size of the problem by adding an additional n nonnegative
auxiliary variables and 3n auxiliary constraints (26)–(29).

3. Binary Quadratic Program Classifications

In this section, we introduce the five different classes of BQPs
that we consider in our computational study and discuss the
manner in which our problem instances are generated.

3.1. Unconstrained 0-1 Quadratic Program: Boolean Least
Squares Problem. The first family of 0-1 quadratic problems
that we investigate is the unconstrained BQP (UBQP), so that
X is defined as

X ≡ x ∈ℝn : 0 ≤ xi ≤ 1 for i = 1,⋯, nf g: ð31Þ

While simplistic, the UBQP is notable for its ability to
represent a wide range of applications (see [2] for a recent
survey). For our experiments, we decided to focus on the
Boolean least squares problem (BLSP), which is a basic

4 Journal of Applied Mathematics



problem in digital communication where the objective is to
identify a binary signal x from a collection of noisy measure-
ments. Traditionally, this problem is modeled as

minimize Dx − dk k2 = xTDTDx − 2dTDx + dTd ð32Þ

subject to

X ≡ x ∈ℝn : 0 ≤ xi ≤ 1 for i = 1,⋯, nf g, ð33Þ

where D ∈ℝm×n and d ∈ℝm are given. By ignoring the con-
stant term dTd, we can rewrite this formulation in our nota-
tion and in maximization form by setting Q =DTD,
q = −2dTD, and subsequently defining Cij = −Qij for i ≠ j,
Cij = 0 for i = j, and ci = 2qi +Qii for all i.

We randomly generated instances of BLSP as in [1]. Spe-
cifically, we setm = n and generated a random Dmatrix with
elements from the standard normal distribution Nð0, 1Þ and
a binary vector y ∈ℝn with elements from the uniform distri-
butionUð0, 1Þ. The vector d is then constructed as d =Dy + ε
where ε is a random noise term with elements from Nð0, 1Þ.
We generated 10 instances for each value of n, which we var-
ied from 30 to 70 in increments of 10 to provide a range of
progressively more challenging problems.

3.2. Quadratic Multidimensional Knapsack Problem. The
next class of problems that we consider is the quadratic knap-
sack problem with multiple constraints, also known as the
quadratic multidimensional knapsack problem (QMKP)
(see [10, 12]). These problems have the following form.

QMKP : maximize〠
n

j=1
cjxj + 〠

n

j=1
〠
n

i=1
i≠j

Cijxixj ð34Þ

subject to

〠
n

i=1
aki xi ≤ bk for k = 1,⋯m,

x binary:
ð35Þ

Within QMKP, the cj, aki, Cij, and bk coefficients are typ-
ically nonnegative scalars. We assume for every k that aki ≤ bk
for each i since otherwise variables can be fixed to 0 and that
bk <∑n

i=1aki for the kth constraint to be restrictive.
Problem QMKP is a generalization of both the multidi-

mensional knapsack problem and the quadratic knapsack
problem (QKP). The multidimensional knapsack problem
is that case of QMKP wherein Cij = 0 for all ði, jÞ, so that
the problem reduces to linear form. The QKP retains the
quadratic objective terms but has only a single knapsack con-
straint defining X ðm = 1Þ: This latter problem is one of the
most extensively studied nonlinear discrete optimization
programs in the literature (see [13] for an excellent survey).

We randomly generated two different test beds; both
of which contained instances with k = 1, 5 and 10 knap-

sack constraints. The coefficients aki are integers taken
from a uniform distribution over the interval [1,50], and
bk is an integer from a uniform distribution between 50
and ∑n

i=1aki.
For the first test bed, the objective coefficients were all

nonnegative. Specifically, the (nonzero) objective coefficients
cj for all j and Cij = Cji for ði, jÞ with i < j are integers
from a uniform distribution over the interval [1,100]. To
assess the effects of the density of nonzero cj and Cij on
CPU time, each of these coefficients is nonzero with some
predetermined probability Δ. We considered instances
with probabilities (densities) Δ = 25%, 50%, 75%, and 100%:
For each value of Δ, we generated ten instances for each
value of n, which varied from 80 to 110 in increments of
10 when k = 1 and varied from 30 to 70 in increments of
10 when k = 5 or 10.

For the second test bed, the objective coefficients were
mixed in sign. Specifically, the (nonzero) objective coeffi-
cients cj for all j and Cij = Cji for ði, jÞ with i < j are integers
from a uniform distribution over the interval ½−100,100�. As
with the first test bed, the density of the objective coeffi-
cients was varied from Δ = 25–100% in increments of 25%.
For each value of Δ, we generated 10 instances for each
value of n, which varied from 20 to 50 in increments of 10
for k = 1, 5, and 10. We utilized smaller sizes as objective
coefficients that are mixed in sign are significantly more dif-
ficult to solve.

3.3. The Heaviest k-Subgraph Problem. The heaviest k-sub-
graph problem (HSP) is concerned with determining a block
of k nodes of a weighted graph such that the total edge weight
within the subgraph induced by the block is maximized [14].
The HSP can be formulated as

HSP : maximize〠
n

j=1
〠
n

i=1
i≠j

Cijxixj ð36Þ

subject to

〠
n

i=1
xi = k,

x binary:
ð37Þ

The HSP is also known under the name of the cardi-
nality constrained quadratic binary program, the densest
k-subgraph problem, the p-dispersion-sum problem, and
the k-cluster problem. For each number of nodes, n = 10, 20,
30, and 40, we randomly generated 10 instances with three dif-
ferent graph densities, Δ = 25%, 50%, and 75%. Specifically,
for each density Δ and any pair of indexes ði, jÞ such that
i < j, we assigned Cij = 1 with probability Δ and Cij = 0 oth-
erwise. We set k = 0:5 n for all of our tests.

3.4. k-Item Quadratic Knapsack Problem. The k-item qua-
dratic knapsack problem (kQKP), introduced in [15, 16],
consists of maximizing a quadratic function subject to a

5Journal of Applied Mathematics



linear knapsack constraint with an additional equality cardi-
nality constraint:

kQKP : maximize〠
n

j=1
cjxj + 〠

n

j=1
〠
n

i=1
i≠j

Cijxixj ð38Þ

subject to

〠
n

i=1
aixi ≤ b, ð39Þ

〠
n

i=1
xi = k, ð40Þ

x binary: ð41Þ
Here, we assume that ai ≤ b for each i since otherwise var-

iables can be fixed to 0 and that b <∑n
i=1ai for the constraint

to be restrictive. Let us denote by kmax the largest number of
items which can be filled in the knapsack, that is, the largest
number of the smallest ai whose sum does not exceed b.
We can assume that k ∈ f2,⋯, kmaxg.

Note that kQKP includes two classical subproblems, the
HSP by dropping constraint (39) and the QKP by dropping
constraint (40). We randomly generated two different tests
beds; both of which contained instances with randomly cho-
sen values of k from the discrete uniform distribution over
the range ½2, bn/4c�. For the first test bed, the objective coef-
ficients were all nonnegative, where the (nonzero) objective
coefficients cj for all j and Cij = Cji for ði, jÞ with i < j are inte-
gers from a uniform distribution over the interval [1,100].
The density of the objective coefficients was varied from
Δ = 25–100% in increments of 25%. For each value of Δ,
we generated ten instances with n = 50, 60, and 70 variables.
For the second test bed, the objective coefficients were mixed
in sign, where the objective coefficients cj for all j and Cij =
Cji for ði, jÞ with i < j are integers from a uniform distribu-
tion over the interval ½−100,100�. As with the first test bed,
the density of the objective coefficients was varied from
Δ = 25 – 100% in increments of 25%. For each value of Δ,
we generated 10 instances for each value of n, where n varied
from 50 to 90 in increments of 10.

3.5. Quadratic Semiassignment Problem: Task Allocation
Problem. Here, we consider a specific instance of the qua-
dratic semiassignment problem (QSAP) called the task allo-
cation problem [17]. A set of tasks fT1,⋯, Tmg is to be
allocated to a set of processors fP1,⋯, Png. The execution
costs for assigning task Ti to processor Pk is denoted by eik
and the communication costs between Ti on Pk and T j on
Pl is denoted by Cikjl. The constraints limit every task to
exactly one processor. The specific formulation is as follows.

QSAP : minimize 〠
m

i=1
〠
n

k=1
eikxik + 〠

m−1

i=1
〠
m

j=i+1
〠
n

k=1
〠
n

l=1
Cikjlxikxjl

ð42Þ

subject to

〠
n

k=1
xik = 1 for i = 1,⋯m,

x binary:
ð43Þ

For our tests, we considered two values of n (4 and 5) and
three values ofm (10, 12, 15). For each of the six ðm, nÞ pairs,
we generated 10 instances where the coefficients eik and Cikjl

are integers from a uniform distribution over the interval
[−50,50] as in [1]. Note that in our tests, we changed the
sense of the objective function of QSAP to maximization.

4. Computational Study

In this section, we attempt to answer the questions posed in
the previous sections. In addition, we compare the standard
linearization and Glover’s method with both the linearization
strategy of Sherali and Smith and direct submission of the
BQP to the solver. All tests were implemented in Python
and executed on a Dell Precision Workstation equipped with
dual 2.4GHz Xeon processors and 64GB of RAM running
64bit Windows 10 Professional. In order to better under-
stand the performance of a linear formulation independent
of the solver, we utilized three different MILP optimization
packages, CPLEX 12.8.0, GUROBI 8.0.0, and XPRESS 8.5.0,
which were the most current versions of the software avail-
able when we performed the computational tests. We utilized
the default settings on all the MILP solvers with a time limit
of 3,600 seconds (1 hr) per instance. Note that for the sake of
brevity, we only present a subset of the data generated during
our study. However, more complete data is available upon
request to the corresponding author.

We present our results using performance profiles, which
is a graphical comparison methodology introduced by Dolan
and Moré [18] to benchmark optimization software. Rather
than analyzing the data using average solve times that tend
to be skewed by a small number of difficult problem
instances, performance profiles provide the cumulative dis-
tribution function of the ratio of the solve time of a partic-
ular formulation versus the best time of all formulations as
the performance metric. This effectively eliminates the
influence of any outliers and provides a graphical presen-
tation of the expected performance difference among the dif-
ferent formulations.

In order to describe our specific implementation of the per-
formance profiles, suppose that we have a set F of nf formula-
tions and a set P of np problem instances. For each problem p
and formulation f , we define tp,f = computing time required
to solve problem p using formulation f :

We compare the performance of formulation f on prob-
lem p with the best performance by any formulation on this
problem using the performance ratio

rp,f =
tp,f

min tp,f : f ∈ F
� � : ð44Þ

6 Journal of Applied Mathematics



Then, the cumulative performance profile is defined as

ρf τð Þ = 1
np

size p ∈ P : rp,f ≤ τ
� �

, ð45Þ

so that ρf ðτÞ is the probability for formulation f ∈ F that a
performance ratio rp,f is within a factor τ of the best possible
ratio. Thus, for example, ρf ð1Þ is the probability of formula-
tion f to be the best formulation to solve any given problem,
while ρf ð3Þ is the probability of formulation f to be the best
within a time factor of 3 of the best formulation. Note that the
performance profiles also provide information about the for-
mulations that fail to reach optimality within the time limit.
In particular, those profiles that do not meet ρf ðτÞ = 1 indi-
cate that there is a probability that they will not solve a subset
of problems to optimality within the time limit.

4.1. Results for the Standard Linearization.We begin with our
first question raised: When implementing the standard line-
arization, should you utilize the full formulation or use the
formulation that is based on the sign of the quadratic objec-
tive coefficients? That is, how does STD compare with STD′
when submitted to an MILP solver?

Figure 1 shows the performance obtained for STD and
STD′ for each class of BQP, where we aggregated all of the
sizes and densities for each problem class, along with the
three different MILP solvers. Note that since STD and
STD′ vary depending on the sign of the objective coefficients,
we provide two performance profiles for both QMKP and k
QKP, one for instances with positive quadratic coefficients
and one for instances with quadratic coefficients of mixed
sign. For the reader unfamiliar with performance profiles,
let us examine the results for the BLSP presented in
Figure 1(a) in detail. Here, nf = 2 as we are comparing the

two formulations STD and STD′, while np = 5 sizes ðn = 30,
40, 50, 60, 70Þ × 10 instances × 3MILP solvers = 150. Each of
these 150 instances is then solved using STD and STD′. For
each instance, the minimum computational time of the two
formulations is determined, and then the computational time
of each formulation is divided by the minimum time, provid-
ing the performance ratio. Using the calculation of the per-
formance ratios for all instances, the cumulative profile is
then calculated for a set of fixed ratios of time factors. Recall
that ρf ð1Þ is the probability formulation f will have the fast-
est solve time for any given problem. Thus, the probability
that STD′ will have the fastest solve time for BLSP is approx-
imately 86%, whereas the probability that STD will be the
fastest formulation is approximately 14%.

The performance profiles clearly indicate that STD′ is
more likely to have the fastest solve time for all of the BQPs
under consideration. While not presented in Figure 1, when
aggregated across all problem classes, the probability that
STD′ is the fastest formulation was 92%. We also note that
a more detailed analysis showed that STD′ was the superior
formulation regardless of objective coefficient density, prob-
lem size, or MILP solver—we omit the details for brevity.

While performance profiles provide information on how
likely a particular formulation will have a faster solve time,
they do not indicate the actual differences in solve time. We
report the average CPU times to solve the formulations to
proven optimality for the different BQP classes in Figure 2.
These average CPU times were computed after removing all
instances where at least one of the formulations did not solve
within the time limit. That is, the averages only include
instances in which both formulations were solved to optimal-
ity within the 1-hour time limit. Note that the performance
profiles indicate that the number of instances that were not
solved within the time limit was fairly small. To see this,
recall that those profiles that do not meet ρf ðτÞ = 1 indicate
that there is a probability that they will not solve a subset of
problems to optimality within the time limit. For example,
note that approximately 5% of the instances of HSP formu-
lated with STD did not solve within the 1-hour limit. The
data in Figure 2 indicates that STD′ is significantly faster
than STD on average for all BQP classes considered. Indeed,
for 5 of the 7 classifications, the average CPU time of STD′ is
less than half of that of STD.

Thus, our results clearly indicate that when utilizing the
standard linearization, it is best to use the sign-based version
STD′ regardless of BQP class, objective function density,
problem size, or MILP solver. It is interesting to note that
STD has a continuous relaxation that is at least as tight as
STD′ but comes at the expense of a larger problem size.
Our tests clearly indicate that the stronger continuous relax-
ation of STD does not provide an overall computational
advantage.

4.2. Results for Glover’s Formulation. In this section, we
investigate the four questions posed regarding Glover’s for-
mulation. While ideally we would investigate these questions
simultaneously, doing so would require a prohibitive number
of test cases. Therefore, we investigate the questions in an
incremental manner to make the task more tractable.

We begin by focusing on answering the second and
fourth questions raised. That is, when formulating Glover’s
model, should we record the quadratic objective coefficient
matrix in a symmetric or upper triangular form, and should
we reduce the size of G1 by removing constraints (11) and
(13) to obtain the modified Glover formulation G2? In order
to compare the use of a symmetric quadratic coefficient
matrix C with that of one in upper triangular form when for-
mulating G1 and G2, we replaced Cij in the objective func-

tion of BQP with Cij′ defined as follows. To obtain an upper

triangular objective coefficient matrix, we set Cij′ = Cij + Cji

for all ði, jÞwith i < j and Cij′ = 0 for i ≥ j. To obtain a symmet-

ric objective coefficient matrix, we set Cij′ = Cji′ = 1/2ðCij +
CjiÞ) for all ði, jÞ with i < j and Cii′ = 0 for all i.

Figure 3 shows the performance of the four different for-
mulations under consideration: G1 and G2 formulated with
both symmetric and upper triangular objective coefficient
matrices. We once again aggregate across all objective coeffi-
cient densities, sizes, and MILP solvers. Note that when

7Journal of Applied Mathematics



1
0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n
0.8

1.0

3 5 7 9
𝜏 = Factor of best ratio

11 13

STD
STD′

(a)

1
0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

11 21 31
𝜏 = Factor of best ratio

41 51

STD
STD′

(b)

0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

𝜏 = Factor of best ratio
1 11 21 31 41 51

STD
STD′

(c)

1
0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n
0.8

1.0

5 9 13
𝜏 = Factor of best ratio

17 21

STD
STD′

(d)

0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

𝜏 = Factor of best ratio
1 5 9 13 17 21

STD
STD′

(e)

1
0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

21 41 61
𝜏 = Factor of best ratio

81 101

STD
STD′

(f)

Figure 1: Continued.

8 Journal of Applied Mathematics



formulating G1 and G2, we computed the bounds within the
formulations as in (16) since preliminary computational
experience showed this method provides the best perfor-
mance. However, we will formally compare the bounds of
(15), (16), and (17) in another set of tests. We also note that
when computing solution times, we included the time needed
to find the bounds within G1 and G2.

The results in Figure 3 provide a fairly definitive answer
to question 4—Problem G2 is superior to G1 when compared
using the same objective coefficient representation. Indeed,
G2 with objective coefficients in upper triangular form had
the highest probability of being the fastest formulation for
all classes of BQPs, while G2 with objective coefficients in
symmetric form had the second highest probability of being

the fastest formulation for all classes except BLSP and QSAP.
With regards to Question 2, note that both G1 and G2 for-
mulated with objective coefficients in upper triangular form
were more likely to be faster than their respective versions
formulated with symmetric objective coefficients, with the
exception of instances of kQKP with positive objective coef-
ficients. Interestingly, we note that a more detailed analysis
(not presented here) showed that G2 with symmetric objec-
tive coefficients was also superior for higher density
(Δ = 75% and 100%) instances of QMKP with positive coeffi-
cients. Note that the performance profiles also indicate that
some of the formulations struggled with being able to solve
all of the instances within the time limit. For example, G1
and G2 formulated with symmetric objective coefficients
were unable to solve approximately 50% of the instances of
QSAP, while none of the formulations were able to solve all
of the instances of HSP.

We report the average CPU times to solve the formula-
tions to proven optimality for the different BQP classes in
Figure 4. As before, these average CPU times were computed
after removing all instances where at least one of the formu-
lations did not solve within the time limit.

Figure 4 provides some additional information not cap-
tured in the performance profiles. First, note that while the
performance profiles in Figure 3 indicate that G2 was supe-
rior to G1, Figure 4 indicates that the actual difference in
average solution times between G1 and G2 is fairly negligible
when they are formulated with the same objective represen-
tation. However, there are stark differences between the sym-
metric and upper triangular coefficient representations for
both G1 and G2. In particular, instances of G1 and G2 for-
mulated with symmetric objective coefficients typically take
considerably longer to solve on average than their respective
models formulated with upper triangular coefficients. There
are two exceptions—G2 with symmetric objective coefficients
is superior for HSP and instances of kQKP with positive
coefficients.

1
0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

32 4 5
𝜏 = Factor of best ratio

6 7

STD
STD′

(g)

Figure 1: Performance profiles based on relative CPU time (s) for Question 1. (a) BLSP, (b) QMKP with positive coefficients, (c) QMKP with
mixed-sign coefficients, (d) kQKP with positive coefficients, (e) kQKP with mixed coefficients, (f) HSP, (g) QSAP.

0

BL
SP

Q
M

KP
 w

 p
os

Q
M

KP
 w

 m
ix

ed

k
Q

KP
 w

 P
os

k
Q

KP
 w

 m
ix

ed

H
SP

Q
SA

P

20

40

60

80

100

A
ve

ra
ge

 C
PU

 ti
m

e (
s)

120

140

STD
STD′

Figure 2: Average CPU times (s) for Question 1.

9Journal of Applied Mathematics



1.0
0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

𝜏 = Factor of best ratio

G2 with upper triangular quadratic coefficients
G1 with upper triangular quadratic coefficients
G2 with symmetric quadratic coefficients
G1 with symmetric quadratic coefficients

(a)

1.0
0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
𝜏 = Factor of best ratio

G2 with upper triangular quadratic coefficients
G1 with upper triangular quadratic coefficients
G2 with symmetric quadratic coefficients
G1 with symmetric quadratic coefficients

(b)

1.0
0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
𝜏 = Factor of best ratio

G2 with upper triangular quadratic coefficients
G1 with upper triangular quadratic coefficients
G2 with symmetric quadratic coefficients
G1 with symmetric quadratic coefficients

(c)

1.0
0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
𝜏 = Factor of best ratio

G2 with upper triangular quadratic coefficients
G1 with upper triangular quadratic coefficients
G2 with symmetric quadratic coefficients
G1 with symmetric quadratic coefficients

(d)

Figure 3: Continued.

10 Journal of Applied Mathematics



While the results are not completely definitive, Figures 3
and 4 indicate that in general, constraints (11) and (13)
should be dropped from G1 to obtain G2 and the quadratic
objective coefficients C should be represented in upper
triangular form. We reiterate that while the average CPU
time differences between G1 and G2 are fairly small, those
differences are rather large for the two different objective
function representations.

We now attempt to answer Question 5, which is con-
cerned with whether it is advantageous to perform the substi-
tution of variables that reduces G2 to either G2a or G2b.
Figure 5 shows the performance profiles of G2, G2a, and

G3b where we aggregate across all objective coefficient densi-
ties, sizes, and MILP solvers. As with our previous test cases,
we computed the bounds within the formulations as in (16).

Note that, typically, G2 was the slowest formulation while
G2a and G2b had fairly comparable likelihoods of being the
fastest. Although, a closer examination reveals that G2a was
slightly more likely to be the fastest formulation for all prob-
lem classes except instances of QMKP with positive objective
coefficients. We report the average CPU times in Figure 6,
which were computed as before.

While the average CPU times for G2, G2a, and G2b are
all fairly similar for each problem classification, G2a tended

1.0
0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
𝜏 = Factor of best ratio

G2 with upper triangular quadratic coefficients
G1 with upper triangular quadratic coefficients
G2 with symmetric quadratic coefficients
G1 with symmetric quadratic coefficients

(e)

1.0
0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
𝜏 = Factor of best ratio

G2 with upper triangular quadratic coefficients
G1 with upper triangular quadratic coefficients
G2 with symmetric quadratic coefficients
G1 with symmetric quadratic coefficients

(f)

1.0
0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
𝜏 = Factor of best ratio

G2 with upper triangular quadratic coefficients
G1 with upper triangular quadratic coefficients
G2 with symmetric quadratic coefficients
G1 with symmetric quadratic coefficients

(g)

Figure 3: Performance profiles based on relative CPU time (s) for Questions 2 and 4. (a) BLSP, (b) QMKP with positive coefficients, (c)
QMKP with mixed-sign coefficients, (d) kQKP with positive coefficients, (e) kQKP with mixed coefficients, (f) HSP, (g) QSAP.

11Journal of Applied Mathematics



to be the fastest formulation. Therefore, based on our tests,
we recommend that G2 should be reduced in size via the sub-
stitution of variables sj =U1

j xj − zj to obtain G2a. While the
results were certainly not definitive, they do suggest that
G2a has the highest probability of being the fastest
formulation.

We now address Question 3 regarding how the bounds
within Glover’s formulation should be computed. Within
our tests, we refer to the bounds computed as in (15) as weak,
those computed as in (16) as tight, and those as in (17) as
tightest. Based upon our prior results, our tests were all per-
formed using G2a formulated with the three different
methods to compute the bounds. We again reiterate that
our solution times include not only the time to solve G2a to
integer optimality but also the time required to compute
the bounds within the formulation. Our results are presented
in Figure 7 where we once again aggregate across all objective
coefficient densities, sizes, and MILP solvers. Note that we do
not include the BLSP instances because for these problems,
the bounds (15), (16), and (17) are all the same.

Interestingly, note that G2a formulated with the weak
bounds of (15) tended to be the fastest formulation. We
found this result surprising as preliminary experience
showed that the tight bounds of (16) were superior. A more
detailed analysis revealed that for smaller-sized instances,
the extra time needed to find the tighter bounds of (16) was
not warranted. However, once the instances start to become
more challenging, the additional strength afforded by the
tight bounds (16) was advantageous even though the time

to find the bounds increases. In order to better understand
how these bounds affect CPU time, let us examine the aver-
age CPU times presented in Figure 8.

Note that in terms of average CPU times, G2a formulated
with the tight bounds (16) was the best formulation for all
problem classifications except instances of kQKP with posi-
tive objective coefficients. Moreover, not only did the weak
bounds (15) perform poorly in terms of average CPU times,
they typically performed significantly worse than the tighter
bounds. This stems from the fact that the continuous relaxa-
tion strength of G2a formulated with (15) for anything other
than smaller-sized instances is too weak for the linearization
to be effective. Thus, our general recommendation is to for-
mulate Glover’s model with the tight bounds of (16), espe-
cially for larger-sized instances.

We summarize the answers and recommendations from
Questions 1 through 5 in Table 1.

In conclusion, our recommendation based on a detailed
computational study across five different classes of BQPs
and three different MILP solvers is to implement Glover’s
formulation using the concise version G2a with an upper tri-
angular objective coefficient matrix C where the bounds
within the formulation are computed as in (16).

4.3. Comparison of Exact Solution Methods. In this section,
we compare our recommended versions of the standard lin-
earization and Glover’s method, STD′, and G2a formulated
with an upper triangular quadratic coefficient matrix C and
the bounds of (16), with the more recent linearization of

0

50

100

A
ve

ra
ge

 C
PU

 ti
m

e (
s) 150

200

BL
SP

Q
M

KP
 w

 p
os

Q
M

KP
 w

 m
ix

ed

k
Q

KP
 w

 p
os

k
Q

KP
 w

 m
ix

ed

H
SP

Q
SA

P

G2 with upper triangular quadratic coefficients
G1 with upper triangular quadratic coefficients
G2 with symmetric quadratic coefficients
G1 with symmetric quadratic coefficients

Figure 4: Average CPU times (s) for Questions 2 and 4.

12 Journal of Applied Mathematics



1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

G2
G2a
G2b

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n
0.8

1.0

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

G2
G2a
G2b

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

(b)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

G2
G2a
G2b

(c)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

G2
G2a
G2b

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n
0.8

1.0

(d)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

G2
G2a
G2b

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

(e)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

G2
G2a
G2b

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

(f)

Figure 5: Continued.

13Journal of Applied Mathematics



Sherali and Smith and direct submission to an optimization
solver. When formulating the Sherali-Smith model, we uti-
lized the bounds of (16) and an upper triangular quadratic
coefficient matrix.

As noted earlier, many MILP solvers have recently been
updated to directly handle nonconvex BQPs. Before examin-

ing the results of our study, we review the two approaches
typically utilized by commercial MILP solvers to solve non-
convex BQPs directly. The MILP solvers of CPLEX, GUR-
OBI, and XPRESS employ one of two different strategies for
solving nonconvex BQPs. The first strategy consists of trans-
forming the nonconvex problem into an equivalent convex

G2
G2a
G2b

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

0.8

1.0

(g)

Figure 5: Performance profiles based on relative CPU time (s) for Question 5. (a) BLSP, (b) QMKP with positive coefficients, (c) QMKP with
mixed-sign coefficients, (d) kQKP with positive coefficients, (e) kQKP with mixed coefficients, (f) HSP, (g) QSAP.

BL
SP

Q
M

KP
 w

 p
os

Q
M

KP
 w

 m
ix

ed

k
Q

KP
 w

 p
os

k
Q

KP
 w

 m
ix

ed

H
SP

Q
SA

P

G2
G2a
G2b

A
ve

ra
ge

 C
PU

 ti
m

e (
s)

0

10

20

30

40

50

60

Figure 6: Average CPU times (s) for Question 5.

14 Journal of Applied Mathematics



2
0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14 16

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

𝜏 = Factor of best ratio

Weak bounds
Tight bounds
Tightest bounds

(a)

2
0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14 16

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

𝜏 = Factor of best ratio

Weak bounds
Tight bounds
Tightest bounds

(b)

2
0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14 16

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

𝜏 = Factor of best ratio

Weak bounds
Tight bounds
Tightest bounds

(c)

2
0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

𝜏 = Factor of best ratio

Weak bounds
Tight bounds
Tightest bounds

(d)

2
0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

𝜏 = Factor of best ratio

Weak bounds
Tight bounds
Tightest bounds

(e)

0.0
1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

𝜏 = Factor of best ratio

Weak bounds
Tight bounds
Tightest bounds

(f)

Figure 7: Performance profiles based on relative CPU time (s) for Question 3. (a) QMKP with positive coefficients, (b) QMKP with mixed-
sign coefficients, (c) kQKP with positive coefficients, (d) kQKP with mixed coefficients, (e) HSP, (f) QSAP.

15Journal of Applied Mathematics



BQP, which can then be solved using standard convex qua-
dratic programming techniques. This is accomplished by
using the identity x = xTIx when x is binary. The quadratic
portion of the objective function xTCx can therefore be
replaced by xTðC + ρIÞx − ρx. A number of strategies for
selecting a ρ so that C + ρI will be negative semidefinite have
been proposed, such as those by Billionet et al. [19]. The sec-
ond strategy is to employ a linearization technique to trans-
form the nonconvex BQP into an equivalent linear form,
such as the standard linearization.

For this second part of our computational study, we
randomly generated a completely new set of test problems
from those used in Sections 4.1 and 4.2. In addition, we also
adjusted the sizes of the problem instances to include more
challenging problems (although all other aspects of the
instances were generated as presented in Section 3). With
regards to instances of Problem QMKP with positive objec-
tive coefficients, n was varied from 110 to 140 in increments
of 10 when k = 1 and varied from 50 to 80 in increments of 10
when k = 5 or 10. For instances of QMKP with objective

Q
M

KP
 w

 p
os

Q
M

KP
 w

 m
ix

ed

k
Q

KP
 w

 p
os

k
Q

KP
 w

 m
ix

ed

H
SP

Q
SA

P

Weak bounds
Tight bounds
Tightest bounds

A
ve

ra
ge

 C
PU

 ti
m

e (
s)

0

10

20

30

40

50

Figure 8: Average CPU times (s) for Question 3.

Table 1: Summary of answers to Questions 1 through 5.

Question Answer/recommendation

1: When applying the standard linearization to a BQP, should you
reduce the size of the formulation based on the sign of the quadratic
objective coefficients?

Our recommendation is to use the sign-based formulation STD′
when using the standard linearization.

2: When applying Glover’s formulation, should you represent the
quadratic objective coefficient matrix C in upper triangular or
symmetric form?

Our recommendation is to represent the quadratic objective
coefficient matrix C in upper triangular form when using Glover’s

method.

3: With regards to the overall computational effort to formulate and
solve problem G1 to optimality using a MILP solver, should we
compute the bounds Uj

1, Uj
0, L1j, and L0j using (15), (16), or (17)?

In general, we recommend using the bounds of (16) when applying
Glover’s method. However, for smaller-sized instances it may be

beneficial to use the weaker bounds of (15).

4: How do formulations G1 and G2 compare when submitted to a
MILP solver?

In general, formulation G2 is superior to G1.

5: Is it advantageous to perform the substitution of variables to
reduce Problem G2 to G2a or G2b when submitting the model to a
MILP solver?

While formulations G2, G2a, and G2b are fairly comparable in terms
of performance, our general recommendation is to use G2a when

applying Glover’s method.

16 Journal of Applied Mathematics



2 4 6 8 10 12 14

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

G2a
STD′

SS
Quadratic submission to CPLEX
Quadratic submission to GUROBI
Quadratic submission to XPRESS

(a)

2 4 6 8 10 12 14

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

G2a
STD′

SS
Quadratic submission to CPLEX
Quadratic submission to GUROBI
Quadratic submission to XPRESS

(b)

2 4 6 8 10 12 14

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

G2a
STD′

SS
Quadratic submission to CPLEX
Quadratic submission to GUROBI
Quadratic submission to XPRESS

(c)

2 4 6 8 10 12 14

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

G2a
STD′

SS
Quadratic submission to CPLEX
Quadratic submission to GUROBI
Quadratic submission to XPRESS

(d)

Figure 9: Continued.

17Journal of Applied Mathematics



coefficients of mixed sign, n was varied from 40 to 70 in
increments of 10 for k = 1, 5, or 10. We varied n from 20 to
50 in increments of 10 for Problem HSP. For instances of
kQKP with positive objective coefficients, n was varied from
60 to 90 in increments of 10, while for those instances with
objective coefficients of mixed sign, we varied n from 80 to
110 in increments of 10. With regards to Problem QSAP,
we considered ten ðm, nÞ pairs where n ∈ f4, 5g and m ∈
f10, 12, 15, 18, 20g. For BLSP, we maintained the same
sizes as before since this set was already challenging.

The performance profiles of our results are presented in
Figure 9, where we once again aggregate across all objective
coefficient densities and sizes. Note that in order to ensure
that the number of problem instances np is the same for each
of the formulations as required to construct performance
profiles, we only solved the linearizations STD′, G2a, and
SS with CPLEX, as opposed to all three solvers as in Sections
4.1 and 4.2. We report the average CPU times in Figure 10,
which were computed as before. That is, these average CPU
times were computed after removing all instances where at

2 4 6 8 10 12 14

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

G2a
STD′

SS
Quadratic submission to CPLEX
Quadratic submission to GUROBI
Quadratic submission to XPRESS

(e)

2 4 6 8 10 12 14

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

G2a
STD′

SS
Quadratic submission to CPLEX
Quadratic submission to GUROBI
Quadratic submission to XPRESS

(f)

2 4 6 8 10 12 14

𝜏 = Factor of best ratio

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

G2a
STD′

SS
Quadratic submission to CPLEX
Quadratic submission to GUROBI
Quadratic submission to XPRESS

(g)

Figure 9: Performance profiles based on relative CPU time (s) for all approaches. (a) BLSP, (b) QMKP with positive coefficients, (c) QMKP
with mixed-sign coefficients, (d) kQKP with positive coefficients, (e) kQKP with mixed coefficients, (f) HSP, (g) QSAP.

18 Journal of Applied Mathematics



least one of the formulations did not solve within the time
limit. Thus, the averages only include instances in which all
formulations were solved to optimality within the 1-hour
time limit.

While we had hoped that a single strategy would emerge
as the best approach for solving all BQPs regardless of prob-
lem class, the results presented in Figures 9 and 10 clearly
indicate that this is not the case. Indeed, different strategies
appear to be superior for each of the different problem clas-
ses. We begin by noting that in general, direct submission
of the BQP does not appear to be competitive with submis-
sion of any of the linear reformulations. In fact, the average
CPU times are typically much higher when using the qua-
dratic solvers of CPLEX, GUROBI, and XPRESS as opposed
to solving the linearizations. Moreover, the quadratic solvers
were more likely to not be able to solve all instances. For
example, the XPRESS solver was unable to solve approxi-
mately 55% of the instances of QMKP with objective
coefficients of mixed sign. Of the three solvers, CPLEX per-
formed the best for direct submission, which is not surprising
given that the nonconvex BQP solver of CPLEX is more
mature than those of GUROBI or XPRESS (CPLEX has had
the ability to solve nonconvex BQP well before GUROBI or
XPRESS). Overall, our tests suggest that while it is convenient
to be able to directly submit a BQP to the solver, solution times
may be significantly reduced by reformulating the problem
into linear form by the user before applying the solver.

We now examine the performance profiles of Figure 9 to
compare the linearizations STD′, G2a, and SS. The standard
linearization STD′ had the highest probability of being the

fastest formulation for instances of QMKP with objective
coefficients of mixed sign and instances of HSP. Glover’s lin-
earization G2a had the highest probability of being the best
formulation to solve instances of BLSP and instances of k
QKP with both positive objective coefficients and objective
coefficients of mixed sign. The linearization of Sherali and
Smith SS had the largest probability of being the fastest for-
mulation for instances of QMKP with positive objective coef-
ficients, instances of kQKP with objective coefficients of
mixed sign, and instances of QSAP. When examining the
data a little more closely, G2a was the top performing formu-
lation for instances of HSP that were 75% dense, instances of
QMKP with objective coefficients of mixed sign that had den-
sities of 75% and 100%, and instances of kQKP with objective
coefficients of mixed sign that were 100% dense.

In terms of the average CPU times in Figure 10, there
were no significant differences between the three lineariza-
tions. All of the average solution times were fairly close with
the exception of STD′ applied to instances of QSAP. Indeed,
STD′ performed poorly for this class of BQP.

We end our analysis by aggregating the test results for all
of the classes of BQPs into a single data set. The performance
profiles of the three linearizations are presented in Figure 11,
while the average CPU times are presented in Figure 12.

We can see that G2a had the fastest solution time approx-
imately 26% of the time, STD′ was the fastest reformulation
approximately 38% of the time, while SS was the superior for-
mulation approximately 34% of the time. Interestingly, in
terms of average overall CPU time, we see a different pattern.
Note that STD′ required an average overall CPU time of 70

BL
SP

Q
M

KP
 w

 p
os

Q
M

KP
 w

 m
ix

ed

k
Q

KP
 w

 p
os

k
Q

KP
 w

 m
ix

ed

H
SP

Q
SA

P

A
ve

ra
ge

 C
PU

 ti
m

e (
s)

0

100

200

300

400

G2a
STD′

SS

CPLEX
GUROBI
XPRESS

Figure 10: Average CPU times (s) for all approaches.

19Journal of Applied Mathematics



seconds, while G2a only required an average of 28 seconds.
While we omit the details for brevity, a closer examination
of the data suggests that STD′ is better suited for smaller-
sized instances of BQPs, likely because of the large number
of auxiliary variables and constraints. For larger-sized
instances of BQPs, the compactness of G2a and SS seems to
provide an advantage when submitted to an MILP solver.

5. Conclusions and Recommendations

In this paper, we revisited the standard linearization [3] and
Glover’s method [4] for reformulating a BQP into linear
form. Using a large-scale computational study over five dif-
ferent classes of BQPs, we evaluated a number of enhance-
ments that have been proposed for these two linearizations.

A
ve

ra
ge

 C
PU

 ti
m

e (
s)

0

10

20

30

40

50

60

70

G2a STD′ SS

Figure 12: Average CPU times (s) over all problem classes.

2
0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n 
fu

nc
tio

n

𝜏 = Factor of best ratio

G2a
STD′

SS

Figure 11: Performance profiles based on relative CPU time (s) over all problem classes.

20 Journal of Applied Mathematics



Based on our analysis, we recommend that when reformulat-
ing a BQP using the standard linearization, the sign-based
version STD′ should be utilized. When applying Glover’s lin-
earization, we recommend using the concise version G2a
with an upper triangular objective coefficient matrix C where
the bounds within the formulation are computed as in (16).

In the second part of our study, we compared the STD′
and G2a formulations with the more recent linearization of
Sherali and Smith and direct submission of the BQP to the
solver. Our analysis showed that while it is convenient to sub-
mit a BQP directly to the solver, in general, it is advantageous
for the user to perform a linear reformulation themselves
beforehand. That being said, the more mature nonconvex
BQP solver of CPLEX fared acceptably well on a number of
different problem classes. Among the linear reformulations
studied, no linearization was superior over all problem clas-
ses in terms of the probability of having the fastest solution
times. In terms of overall average CPU time across all classes
of BQPs, G2a and SS yielded the best times. Based upon our
analysis, we recommend using STD′ for smaller-sized
instances of BQPs, while for larger-sized instances, we rec-
ommend using either G2a or SS.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] R. Pörn, O. Nissfolk, A. Skjäl, and T. Westerlund, “Solving 0-1
quadratic programs by reformulation techniques,” Industrial
& Engineering Chemistry Research, vol. 56, no. 45,
pp. 13444–13453, 2017.

[2] G. Kochenberger, J. K. Hao, F. Glover et al., “The uncon-
strained binary quadratic programming problem: a survey,”
Journal of Combinatorial Optimization, vol. 28, no. 1,
pp. 58–81, 2014.

[3] F. Glover and E. Woolsey, “Technical Note—Converting the
0-1 polynomial programming problem to a 0-1 linear pro-
gram,” Operations Research, vol. 22, no. 1, pp. 180–182, 1974.

[4] F. Glover, “Improved linear integer programming formula-
tions of nonlinear integer Problems,” Management Science,
vol. 22, no. 4, pp. 455–460, 1975.

[5] H. D. Sherali and J. C. Smith, “An improved linearization
strategy for zero-one quadratic programming problems,”Opti-
mization Letters, vol. 1, no. 1, pp. 33–47, 2007.

[6] R. M. Lima and I. E. Grossmann, “On the solution of noncon-
vex cardinality Boolean quadratic programming problems: a
computational study,” Computational Optimization and
Applications, vol. 66, no. 1, pp. 1–37, 2017.

[7] F. Furini and E. Traversi, “Theoretical and computational
study of several linearisation techniques for binary quadratic
problems,” Annals of Operations Research, vol. 279, no. 1-2,
pp. 387–411, 2019.

[8] R. Forrester and H. Greenberg, “Quadratic binary program-
ming models in computational biology,” Algorithmic Opera-
tions Research, vol. 3, pp. 110–129, 2008.

[9] W. P. Adams, R. J. Forrester, and F. W. Glover, “Comparisons
and enhancement strategies for linearizing mixed 0-1 qua-
dratic programs,” Discrete Optimization, vol. 1, no. 2,
pp. 99–120, 2004.

[10] R. J. Forrester, W. P. Adams, and P. T. Hadavas, “Concise RLT
forms of binary programs: a computational study of the qua-
dratic knapsack problem,” Naval Research Logistics, vol. 57,
no. 1, pp. 1–12, 2010.

[11] W. P. Adams and R. J. Forrester, “A simple recipe for concise
mixed 0-1 linearizations,” Operations Research Letters,
vol. 33, no. 1, pp. 55–61, 2005.

[12] H. Wang, G. Kochenberger, and F. Glover, “A computational
study on the quadratic knapsack problem with multiple con-
straints,” Computers and Operations Research, vol. 39, no. 1,
pp. 3–11, 2012.

[13] D. Pisinger, “The quadratic knapsack problem—a survey,”
Discrete Applied Mathematics, vol. 155, no. 5, pp. 623–648,
2007.

[14] A. Billionnet, “Different formulations for solving the Heaviest
K-Subgraph problem,” INFOR: Information Systems and Oper-
ational Research, vol. 43, no. 3, pp. 171–186, 2005.

[15] L. Létocart, M. C. Plateau, and G. Plateau, “An efficient hybrid
heuristic method for the 0-1 exact k-item quadratic knapsack
problem,” Pesquisa Operacional, vol. 34, no. 1, pp. 49–72,
2014.

[16] L. Létocart and A. Wiegele, “Exact solution methods for the
k-item quadratic knapsack problem,” in International Sym-
posium on Combinatorial Optimization, pp. 166–176,
Springer, Cham, 2016.

[17] A. Billionnet, S. Elloumi, and M.-C. Plateau, “Improving the
performance of standard solvers for quadratic 0-1 programs
by a tight convex reformulation: The QCR method,” Discrete
Applied Mathematics, vol. 157, no. 6, pp. 1185–1197, 2009.

[18] E. D. Dolan and J. J. Moré, “Benchmarking optimization soft-
ware with performance profiles,”Mathematical Programming,
vol. 91, no. 2, pp. 201–213, 2002.

[19] A. Billionnet, S. Elloumi, and A. Lambert, “Extending the QCR
method to general mixed-integer programs,” Mathematical
Programming, vol. 131, no. 1-2, pp. 381–401, 2012.

21Journal of Applied Mathematics


	Computational Comparison of Exact Solution Methods for 0-1 Quadratic Programs: Recommendations for Practitioners
	Recommended Citation

	Computational Comparison of Exact Solution Methods for 0-1 Quadratic Programs: Recommendations for Practitioners
	1. Introduction
	2. Linearizations
	2.1. Standard Linearization
	2.2. Glover’s Linearization
	2.3. Sherali-Smith Linear Formulation

	3. Binary Quadratic Program Classifications
	3.1. Unconstrained 0-1 Quadratic Program: Boolean Least Squares Problem
	3.2. Quadratic Multidimensional Knapsack Problem
	3.3. The Heaviest k-Subgraph Problem
	3.4. k-Item Quadratic Knapsack Problem
	3.5. Quadratic Semiassignment Problem: Task Allocation Problem

	4. Computational Study
	4.1. Results for the Standard Linearization
	4.2. Results for Glover’s Formulation
	4.3. Comparison of Exact Solution Methods

	5. Conclusions and Recommendations
	Data Availability
	Conflicts of Interest

