Moving Objects Using
Formulas

In this activity, you will be doing four simple exercises. In three
of them, a ball will move with either constant velocity or in in the
presence of a constant force. In the last, you will move a planet (just
a large ball!) around the Sun.

3.1 Motion of a Ball with Constant Velocity

Examine the program provided for you in Figure 3.1. Type it in.
Please note that the indentations are important (as is capitalization,
usually).

GlowScript 2.8 VPython

ﬂbj-sphere(nos*véctur{-1,B,E].radiuséﬂ.1.cclﬂrfcolcr.red. make_trail=True}
dt=0.a5

x@=-1

1

2

3

4

5 #

& t=0
7

8

9 vé=1.@
18

12 while t<2:

13 rate{1@)

14 x=x@+vBxt

15 obj.pos=vector(x,8,8)
16 t=t+dt]

Figure 3.1: Motion of a ball with constant velocity

What is each line doing? You can probably figure it out using the
commented-out lines. Now run the program. What is happening?

You probably found that this program is having a sphere move hor-
izontally at a constant velocity. The command in line 14:



14 CHAPTER 3 MOVING OBJECTS USING FORMULAS

X = x0 +v*t

is telling the program to take the original value of x, x0, and to add
a constant velocity times the time elapsed t. This works, but we
will see in the next chapter that it is not the most elegant way of
updating the value of x.

3.2 Motion of a ball with constant velocity
with a plot of position vs. time

Looking at the motion of the ball is fine, but plotting the values of
position, velocity, or acceleration versus time is a way to visualize
what is happening.

Take the first program, copy it with a new name, and add commands
to plot the ball’s position with respect to time. To do this, you must
set up a graph and declare its width and height:

Your program should look something like the one in Figure 3.2:



3.2 MOTION OF A BALL WITH CONSTANT VELOCITY WITH A PLOT OF 15
POSITION VS. TIME

GlowScript 2.7 VPython

gl=graph(width=4@@8, height=280,xtitle="time', ytitle='position')
¥Dots=gdots{color=color.green, graph=gl)

obj=sphere{pos=vector({-1,8,8),radius=0.1,color=color.red, make_trail=True)

WD 00 = NN o L R e

18 t=8

11 dt=8.85
12 x@=-1
13 ve=1.8

17 while t<2:

18 rate(18)

19 A=R@+v@nt

2@ obj.pos=vector(x,s, @)
21 xDots.plot(t,x)

22 t=t+dt|

Figure 3.2: Program Illustrating Graphing Commands

The command graph in line 3 sets up a graph with width 400 pixels,
height 200 pixels, with an x-axis labeled “time” and a y-axis labeled
“position”. The set-up graph is called “g1” for ease of use. Line 4
uses the command gdots to say how the data is to be plotted, and
call it “xDots”. Here, it says that green dots should be used in the
graph called “g1” that was set up in the line before. Finally, line 21
says that “xDots” should be plotted with the values of “t” (for time)
for the x-coordinates, and the values of “x” (for position) for the y-
coordinates.

Your plot should like what is shown in Figure 3.3. Is this what you
would expect? Why?



16 CHAPTER 3 MOVING OBJECTS USING FORMULAS

Figure 3.3: Plot of position versus time for ball with constant

velocity.
1.0

0.5
0

0,0.932 __ae®™"

position

-0.5
-1.0

~1.5
0 0.5 1.0 1.5

time

3.3 Motion of a Ball Being Dropped from
Rest Near the Surface of the Earth

Now, let’s simulate the motion of a ball being dropped from a height
of two meters.

Questions: What has to be done to modify the second program to
mimic the ball being dropped? What is different about this ball’s
velocity compared to the ball’s velocity in the second program?

What does the position-time plot look like now? How is it different
from the previous plot? Why?

Plot the velocity versus time. How does this compare to the current
position versus time plot and the previous position versus time plot?



3.4 Stop AND GO 17

3.4 Stop and Go

In the previous section you probably discovered that instead of using
a constant speed vO, you needed to increment the speed with every
pass within the WHILE loop.

Now let’s use a similar idea to make the ball move to the right at a
constant speed for 2 seconds, then to have it stop and sit there for 2
second, and then to have it move to the left at a constant speed for
2 seconds.

Discuss a possible strategy with your partners. You may find that
there are multiple ways in which you could accomplish this objec-
tive. One way would be to have three different WHILE loops - one
after the other. However, perhaps a more elegant approach uses the
if-then-else syntax - a core syntax structure of any programming
language. In VPython, it gets implemented in a very intuitive way:

If (“Condition to be tested”):
“Execute these commands”
Else:
“Execute those commands”

Here “Condition to be tested” should be something like t<2, t>2,
or t==2, for example. Notice the double equal signs that are needed
because the line should be interpreted as a test of a conditional state-
ment (and not an assignment). Note that the indentations are es-
sential - horizontal alignments signify and enforce structure in any
Python program.

Can you incorporate if-statements to make the ball move to the right,
stop, and then move to the left without any discontinuities? It may



18

CHAPTER 3 MoVING OBJECTS USING FORMULAS

take you a while to get the third part right.

3.5 Motion of a Planet

In Figure 3.5 examine the program simulating the motion of a planet
(the Earth) around the Sun. This is a very simplified depiction; it
does not take into account gravity or any of the laws of planetary
motion. It merely assumes the Earth’s orbit is a perfect circle (which
in reality is not too far from the truth). In the program, note that
there are cosine and sine terms, to define the x and y positions.

=l
WD 00 =) h LN AL R —

T
kot

ates
)

14
1A
16

GlowScript 2.8 VYPython

obstpherE[pDSTvéctur{'ﬁ,ﬁ,ﬁ],radiusrﬁ.S,CUIGFTCUlor.red)
sun=sphere(pos=vector(@,®,08), radius=1.0,color=color.yellow)

=8

dt=1

ye=2

ve=0.8@

theta=0@
thetavenus=@
omega=2+«pi/ 365

18
19
28
21
22
23
24

while True:
rate(168)
¥=10*cos{theta)
y=10*sin{theta)
obj.pos=vector(x,y,8)
theta=omega*t
t=t+dt

Figure 3.4: Simplified Motion of a Planet Around the Sun

The term omega, written as w, is called the angular velocity (or the
frequency). You will see this term later in the course when we dis-
cuss rotational motion. Its value in the program will help you to see



3.5 MoTION OF A PLANET 19

how it is defined.

Exercise: Change the parameters of the provided program. How
does the executed program change?

Exercise (optional): Define a third sphere and call it “Moon”. Use
the same approach to make the Moon revolve around the Earth,
while the Earth still simultaneously revolves around the Sun. Hint:
Vector addition will be very useful here. You have to add something
to the position vector of the Earth.



	Dickinson College
	Dickinson Scholar
	2019

	03 Moving Objects Using Formulas
	W.A. Morgan
	L.Q. English

	VPythonBook 20190816.pdf

