
Analyzing the Singularities of

Freezing Sessile Water Droplets

Submitted in partial fulfillment of honors requirements

for the Department of Physics and Astronomy, Dickinson College,

by

Melia E. Bonomo

Advisor: Professor David P. Jackson

Advisor: Professor Trevor I. Smith

Reader: Professor Hans Pfister

Reader: Professor Lars Q. English

Reader: Professor Brett J. Pearson

Reader: Professor Catrina M. Hamilton-Drager

Reader: Professor Windsor A. Morgan

Carlisle, PA

May 13, 2013



Abstract

The purpose of this project is to investigate the singularity that forms at

the tip of a water droplet freezing on a flat surface. By making several simpli-

fications about the freezing process, we use a geometric model to derive a set

of coupled differential equations that describe the volume, radius, and contact

angle of the unfrozen liquid, and to describe the solidification rate.

We design an apparatus to observe 10-µL drops of purified water freezing

on a chilled aluminum plate. A video camera is used to obtain a movie of the

solidifying drop and capture the singularity that forms in the final moments.

We then experiment with the use of dry ice as a cooling agent and perform video

analysis to examine the changing dimensions of the liquid and solid portions of

the drop during both methods of solidification.

We create a computer-based simulation that predicts the frozen droplet’s

shape, which is dependent on the density ratio of the solid to the liquid. We then

use the simulation to produce a graphical animation of the shape transformation

and to quantify the theoretical and experimental differences.

Analysis of our system of differential equations reveals the appearance of

a pointy tip for liquids with a density ratio less than 0.75; this critical value

is slightly higher in our simulation, at about 0.78. While the simplified model

does predict the formation of singularities, it does not accurately predict the

shape of frozen water droplets, which have an approximate density ratio of

0.9. We derive a second geometric model that accounts for a slightly curved

solid-liquid contact line, which has been observed experimentally under certain

initial conditions.
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1 Introduction

A singularity is typically a location where a function (or its derivative) has an infinite

or undefined value, around which a certain variable changes abruptly. Mathemati-

cally, this phenomenon can also occur at a singular point where the function is not

“well-behaved,” such as at a non-differentiable cusp. It turns out that, there are quite

a few intriguing occurrences of these in nature [1]. For instance, we can see how the

hair grows in various directions on each section of a baby’s head, and the swirl of his

cowlick is the point at which all of these differently oriented hairs meet. Similarly,

the air is completely still in the eye of a hurricane, whereas there are strong winds

blowing in every direction outside of this point. Or, more abstractly, consider what

time it would be if we were standing in the very center of the North pole, the place at

which all time zones converge; one might argue that it is “all times.” Each of these

examples reflects the system’s attempt to confine opposing forces to a single point.

In fluid mechanics, we often see the emergence of singularities at the point be-

tween two fluid phases [2]. For example, sessile water droplets (immobile on a flat

surface), that freeze from the bottom to the top, form a cusp at the very end of the

transformation. This appears to be a result of the opposing forces of the liquid’s sur-

face tension and the solid’s expansion while freezing, such that in the final moments

of the solidification process, the liquid is forced to self-focus to a point. Though the

increasing solid front moving up the height of the drop exhibits this pressure, surface

tension in the remaining liquid portion tries to smooth out the cusp. Therefore, there

is in fact a very slight curvature to the tip.

Studying the geometry of frozen water droplets is useful in understanding how ice

accretions on wing surfaces will degrade aerodynamic performance, since it has been

found that even the smallest change in texture has an effect on the forces created

by the airfoil (wing shape) [3]. Stall warning systems are designed to activate based

on the wing’s angle of attack, and whether this inclination will cause too much drag

or not enough lift for the aircraft. However, due to ice-accretions on the wing, drag

increases more rapidly with an increasing angle of attack, which cannot necessarily be

quantified within the warning system. Previous studies which simulated the effects

of various droplet shapes and sizes have concluded that horn-shaped ice accretions

have a greater impact on wing performance than smoother ice formations of a similar

size. Therefore, the relationship between ice geometry and performance degradation

can be used to design an airfoil that is less sensitive to icing, or even provide some

method of quantifying the negative effects during flight.

Our research focuses on the case of just a single water droplet freezing on a cold

surface. Using a simplified geometric approach, we aim to create a mathematical
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description of this containerless solidification. We present a set of three differential

equations that describe the liquid’s changing volume, radius, and contact angle. By

assuming a flat solid-liquid interface, we derive a fourth equation to describe the

solidification rate. Analysis of these equations reveals the role that the density ratio

ν (of the solid to the liquid) plays in the shape of the frozen drop. With this model,

we expect to see pointy tips for liquids with a critical ratio of 0.75 or less.

Utilizing a high-resolution ProScope camera [4], we record solidifying water droplets

in order to capture the cusp formation. We use two different freezing methods to ob-

serve the effects of different initial conditions. Analysis of these videos allows us to

explore how the dimensions of the drop change during the freezing process.

We use Easy Java Simulations (Ejs) [5] with the above mentioned equations to

create a computer program that generates predictions of frozen droplet shapes, based

on various initial conditions, and produces a real-time animation of the solidification.

The program successfully simulates the appearance of singularities for fluids that have

a density ratio less than 0.78.

Considering that water has a density ratio of about 0.9, we quantitatively com-

pare the differences between our experimentally-observed pointy droplets and the

insufficient results of our model. Based on previous research findings [6], we derive a

second geometric model that looks at the possibility of a curved solid-liquid interface.

Experimentally, we attempt to gather evidence for or against this characteristic of

solidification.

This paper explains the derivations of our two geometric models, the design and

implementation of our experimental setup, and an analysis of our observed and sim-

ulated results. We believe that the inaccuracy of our theoretical approach is due to

one or more of the simplifications we assume in order to derive our equations; the

inclusion of these extra parameters is discussed as a possibility for further research.

2 Theory

To describe the theory behind sessile droplet solidification, we use a simplified ge-

ometric model that assumes the unfrozen liquid is a spherical cap shape, the slope

between the solid and liquid layers is equal, and the solid-liquid interface is flat (as

shown in Fig. 1) [2].

If we consider very small liquid droplets, we can neglect the effects of gravity

according to the Bond number Bo [2]. This is a dimensionless ratio that tells us

whether the force of gravity or the force of surface tension is more dominant in a

liquid sessile drop of density ρl and volume Vl. We derive this relationship by looking
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solid 

Figure 1: The unfrozen liquid is in the shape of a spherical cap with a volume V , radius R,

and contact angle θ that depend on z, the height of the solid-liquid contact line.

at the gravitational force Fg per unit volume Vl within the liquid droplet

Fg
Vl

= ρlg, (1)

where g is the force per unit mass of gravity, and the force of surface tension Fγ over

a certain length L
Fγ
L

= γ, (2)

where γ is the force per unit length of surface tension. To make these two equations

dimensionally equivalent, we divide both sides of Eq. (2) by R2, where R is the radius

of a perfect sphere with the same liquid volume as the sessile droplet

Vl =
4

3
πR3. (3)

We create a dimensionless ratio between the force densities

ρlg

γ/R2
, (4)

which yields the Bond number

Bo =
ρlgR2

γ
. (5)

As can be seen from the ratio, a low Bond number means that the system is more

affected by surface tension forces. For a ratio of about 0.4 (which is cited as being

reasonable for neglecting gravity [2]), we calculate that we need water droplets with

a volume of 10µL.

2.1 Flat Interface model

The volume of a spherical cap can be obtained from looking at the cap in terms of

a full sphere, as portrayed in Fig. 2. We look at a circular slice πr2 with a thickness

3



Figure 2: A diagram of our spherical cap in the context of a complete sphere, used to derive

the liquid volume. Note, the base radius of our spherical cap is R, while R is the radius of

the full sphere, and h is the height from the center of the sphere to the base of the cap.

dz, where z is the height above the center of the sphere with radius R, and r is the

radial distance from the sphere’s center at z, such that r2 = R2 − z2. We integrate

this circular slice over the height of the spherical cap

Vsc =

R∫
h

π(R2 − z2)dz, (6)

where z = h and z = R are the distances from the center of the sphere to the base of

the cap and the top of the sphere respectively, which yields

Vsc = π

(
R3 − 1

3
R3 −R2h+

1

3
h3

)
. (7)

We would like to eliminate h and R to create an equation for the volume that is only

dependent on R and θ, the radius and contact angle at the base of the spherical cap.

Using the relationships

R2 = R2 − h2 (8)

h = R cos θ (9)

R =
R

sin θ
, (10)

as obtained from Fig. 2, we rewrite Eq. (7) and simplify. Our equation for the volume

of a liquid spherical cap is therefore,

Vl = Vsc =
πR3

3

(
2− 3 cos θ + cos3 θ

sin3 θ

)
, (11)
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where R is the base radius of the liquid droplet and θ is the contact angle between

the liquid droplet and the surface beneath it [2].

We derive differential equations for the volume, radius, and contact angle of our

shrinking liquid spherical cap with respect to small increases dz in the height of the

solid layer as the droplet freezes, as seen in Fig. 1.

To describe how the liquid volume Vl decreases during solidification, we start with

the idea of mass conservation,

−dml

dt
=

dms

dt
, (12)

where the mass of the liquid ml decreases with time dt as the mass of the solid ms

increases. We write this equation in terms of the volume V and density ρ of the liquid

and solid to get

−dVl
dt
ρ

l
=

dVs
dt

ρs . (13)

Since we assume that the solid-liquid interface is flat, we describe the increasing solid

volume dVs as a circular slice πR2 with thickness dz, which leads to

−dVl
dt
ρ

l
= πR2 dz

dt
ρs . (14)

When we simplify and solve for dVl/dz, we produce an equation describing how the

volume of the liquid changes with respect to the freezing front height

dVl
dz

= −νπR2, (15)

where ν = ρs/ρl is the density ratio between the solid and the liquid [2].

solid 

liquid 

Figure 3: A close-up diagram of the increasing dVs segment from Fig. 1. As the solid height

dz increases, the radius dR of the liquid sphere cap shrinks, giving rise to Eq. (17). The

increasing solid-vapor interface is given by ds.

We extract an equation to describe how the radius of the interface changes with

height from examining the geometry of the solidification process. By zooming in on

the newly formed dVs slice, as seen in Fig. 3, we notice that the radius is shrinking
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a distance of dR as the solid height increases dz. Using the contact angle θ, we find

the following relationship between the two parameters

tan θ =
dz/dt

−dR/dt
. (16)

We then solve for dR/dz to produce [2]

dR

dz
= − 1

tan θ
. (17)

Finally, to describe the changing contact angle of the liquid spherical cap as the

drop solidifies, we differentiate Eq. (11) with respect to z to get

dVl
dz

=
∂Vl
∂R

dR

dz
+
∂Vl
∂θ

dθ

dz
. (18)

We then use Eqs. (15) and (17), and solve for dθ/dz, to come out with [2]

dθ

dz
= − 1

R
[ν − (1− ν)(2 cos θ + cos 2θ)]. (19)

A full derivation of this differential equation is described in Appendix A.1.

We describe the final size and shape of frozen droplets with Eqs. (17) and (19),

which describe how the radius and contact angle respectively depend on the increasing

height of the solid layer during containerless solidification.

2.2 Solidification rate

We derive an equation to describe the solidification rate of the droplet starting with

Fourier’s Law for heat conduction [7]

~q ∝ −∇T, (20)

which states that the heat flux ~q within the sold portion of the drop is proportional to

the negative temperature gradient −∇T , the direction in which we have the greatest

decrease in temperature. Equation (20) can be written as an equality

~q = −k∇T, (21)

where k is the thermal conductivity of the material, and the heat flux is the small

change in heat dQ in the time interval dt over the cross-sectional area As of the solid

droplet. If we assume a one-dimensional temperature field in the z-direction within

the solidifying drop, we can rewrite Fourier’s Law as such

dQ

dt

1

As
= −kdT

dz
. (22)
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We therefore also assume the change in temperature with respect to change in height

will remain constant,
dT

dz
=

∆T

∆z
. (23)

The dQ/dt in Eq. (22) refers to the flow of sensible heat

dQsensible = c∆Tdms, (24)

which is the small amount of heat released from the solid, according to its specific heat

c, to lower the temperature of a small quantity of mass dms by ∆T (the temperature

change of a slice that has a thickness ∆z). Within each time step dt, the solid portion

of the droplet must be in a steady state, meaning the amount of heat that the solid

releases must equal the amount of heat that it had absorbed. Considering our one-

dimensional temperature field assumption, the heat that is released (as described by

Eq. (24)) must have come from the heat that the solid absorbed from the liquid as it

froze. This is the latent heat

dQlatent = Lfdml, (25)

which is the small amount of heat released from the liquid to perform the phase

change of a small quantity of mass dml to a solid, according to the latent heat of

fusion Lf of water. With heat and mass both conserved during solidification, we set

Eqs. (24) and (25) equal to each other

−dQsensible

dms

=
dQlatent

dml

, (26)

where, by convention, the amount of latent heat per small interval mass of the liquid

that is absorbed by the solid is positive, and the amount of sensible heat per small

interval mass of the solid that is released is negative.

After we plug Eq. (25) into Eq. (26), and solve for dQsensible = −Lfdms, we

substitute this into Eq. (22),

−Lfdms

dtAs
= −k∆T

zf
, (27)

where ∆T = Tf − Tc is the difference between the freezing temperature of the liquid

Tf at the solid-liquid interface and the temperature of the cold surface Tc beneath

the drop, and ∆z = zf , since it is the difference between the height of the freezing

front zf and the base of the drop z0 = 0.

We manipulate this equation by multiplying the right hand side by (cρs/cρs),

where c is the specific heat of the solid and ρs is the ratio of the small amount of solid

mass dms to its volume dVs. Furthermore, we substitute in the thermal diffusivity
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κ = k/cρs, which is a measure of how fast the heat is spreading with units of m2/s,

and the equation for the increasing solid volume in terms of the small change in height

of the freezing front dVs = Asdzf (as stated in Eq. (14))

Lfdms

dtAs
= c

k

cρs

dms

dVs

∆T

zf

= cκ
dms

Asdzf

∆T

zf
. (28)

After simplifying, we rearrange the equation to create a separated differential equation

zfdzf =
cκ∆T

Lf
dt, (29)

which we integrate from an initial solid height zf = 0 at time 0, to a height zf = z

at time t. When we solve the result for z

z =

√
2cκ∆T

Lf
t , (30)

we end up with an equation that describes the height of the solid layer z(t) at any

given time [8]. The derivative of Eq. (30) with respect to time

dz

dt
=

√
cκ∆T

2Lf t
(31)

gives rise to an equation to describe the solidification rate.

We return to the derivations of the equations that describe the changing radius

and contact angle according to the height of the solid, Eqs. (17) and (19) respectively,

and put these in terms of dt

dR

dt
= − 1

tan θ

dz

dt
(32)

dθ

dt
= − 1

R
[ν − (1− ν)(2 cos θ + cos 2θ)]

dz

dt
. (33)

We now use Eqs. (32), (33), and (31) to predict the frozen droplet shape according

to the rate at which the drops freeze.

2.3 Analyzing the differential equations

2.3.1 Frozen droplet profile

We combine Eqs. (32) and (33) to create a separable differential equation, which we

can use to mathematically analyze the shape of the frozen drop at various density

8



ratios. We start by solving both equations for dz

dz = −dR tan θ (34)

dz = − Rdθ

ν − (1− ν)(2 cos θ + cos 2θ)
, (35)

setting them equal to each other, and separating the R and θ variables to get [2]

dR

R
=

dθ

tan θ[ν − (1− ν)(2 cos θ + cos 2θ)]
. (36)

While it is possible to integrate this equation with any value of ν, one of the least

complicated cases is when the solid and liquid densities are equal. Using ν = 1 in

Eq. (36) yields
dR

R
=

dθ

tan θ
. (37)

We integrate each side with respect to its appropriate variable, from the initial radius

R0 and initial contact angle θ0 to a current R and θ. The result is

R =
R0 sin θ

sin θ0

, (38)

which is a solution that corresponds to a perfect sphere with a radius R0/ sin θ0 [2],

as seen from Fig. 2 and Eq. (10). This makes sense because if there is no change

between the liquid and solid densities, we would not expect to see a change in the

liquid spherical cap’s shape after solidification.

2.3.2 Final contact angle

To look at the possible solutions for the final contact angle, we need a differential

equation that describes dθ according to both the shrinking radius dR and the increas-

ing solid height dz. We create such a relationship by transforming Eq. (33) into an

equation for dθ/ds, where the changing solid-vapor interface ds (as seen in Fig. 3) is

related to dz by

dz = sin θ ds, (39)

where our new contact angle equation is therefore

dθ

ds
= − 1

R
sin θ[ν − (1− ν)(2 cos θ + cos 2θ)]. (40)

We determine the final contact angle when Eq. (40) equals zero, which gives us either

0 = sin θ (41)
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or

0 = ν − (1− ν)(2 cos θ + cos 2θ). (42)

Since θ is limited to 0 ≤ θ < π, Eq. (41) leads to

θ = 0, (43)

which refers to a frozen drop with a flat top, and is a solution for all values of ν.

Equation (42) can be written as

0 = cos2 θ(ν − 1) + cos θ(2ν − 2) + ν, (44)

which we solve using the quadratic formula and simplify to

cos θ = ± 1√
1− ν

− 1. (45)

After checking both solutions, we find that only the positive sign satisfies Eq. (40),

and we see that the contact angle at the top of the frozen drop depends only on ν via

θ = cos−1

(
1√

1− ν
− 1

)
. (46)

Because the limit of the cosine function is ±1, substituting cos θ = 1 into Eq. (46)

reveals that a solution does not exist for ν > 0.75.

When we graph Eqs. (43) and (46), as shown in Fig. 4, we see the presence of

this critical value of ν causing a pitchfork bifurcation. A bifurcation occurs when a

small smooth change made to a parameter (in this case ν) causes a sudden qualitative

change in the system’s behavior. When ν < 0.75, we expect to see a pointy solidified

drop because Eq. (46) is the stable solution. However, for ν > 0.75, Eq. (46) has no

solution, and we are left with flat-topped solidified drops based on Eq. (43).

We can prove that Eq. (43) is unstable for ν < 0.75 by thinking of Eq. (40) as a

function of θ

f(θ) = − 1

R
sin θ[ν − (1− ν)(2 cos θ + cos 2θ)] (47)

and analyzing the derivative of this function at θ = 0 [9]. Figure 5 graphs f(θ) for

small changes in the contact angle, near the end of solidification. For all ν values,

the function equals zero at θ = 0, however the derivatives are not the same. As

f(θ) approaches zero at the end of solidification, we see that f ′(θ) < 0 for ν > 0.75,

meaning that the function is evolving towards the θ = 0 solution. Whereas for

ν < 0.75 we see that f ′(θ) > 0, meaning the function evolves away from the solution

θ = 0, giving rise to the instability. When ν = 0.75, f ′(θ) = 0 at/near θ = 0.

Therefore, we can cite ν = 0.75 as the critical value at which the stability of the

flat top solution changes. This analysis is useful because it allows us to see how the

instability arises that leads to a pointy tip.
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Figure 4: Graph of the final contact angle θ (in radians) versus the density ratio ν from

Eq. (43) (red line) and Eq. (46) (blue line). The arrows indicate the direction in which the

system evolves toward a stable solution (solid curves are stable; dashed are unstable). Note

the appearance of a final non-zero contact angle only at density ratios of ν < 0.75; for ratios

higher than this critical value we see frozen drops with flat tops.
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3 Experimental Methods

The main experimental goals were to obtain a clear video of a freezing sessile water

droplet in order to study the pointy tip that appeared and compare the solidification

process to our geometric model. We observed solidifying droplets by means of two

experimental setups: one in which we froze the drop on top of a chilled aluminum

plate, and the second in which we froze the drop directly on dry ice.

In both setups we made use of a micropipette to obtain 10-µL drops of water.

After setting the desired volume with the dial on the device, which has a range from

5µL to 40µL, we placed the tip into a beaker of purified water. This was colored with

green food-dye to improve the video contrast. To dispense uniformly-sized droplets,

we gently depressed the top button of the pipette until this pressure was met by a

light resistance.

For both still-image and video capturing, we employ a ProScope HR [4]. This

is a handheld USB microscope with high resolution capabilities. Specifically, the

still-image resolution is 1280 × 1024 pixels, and the video resolution is 1280 × 1024

pixels at 3.75 frames per second. The lens had 50× magnification strength and 0.5′′

focal length. We made sure that the ProScope HR was angled completely horizontal

to the cold plate plane. The LED lighting option on the device provided sufficient

illumination of the freezing droplet.

We also used a thermocouple with a low-temperature surface probe to record

the temperature of the cold plate or dry ice during the drop’s solidification. The

probe head consisted of two coils soldered together, which make accurate temperature

readings down to -250 ◦C. It connected to a thermocouple, which sent the temperature

input to LoggerPro [10].

3.1 Freezing droplets on a metal plate

We first built an apparatus (as seen in Fig. 6) that consisted of a quarter inch-

thick aluminum plate, which securely fit over the opening of a seamless polystyrene

box. Our most efficient design for the base was an 8′′ × 9′′ × 2′′ solid box, with a

5.5′′× 5.5′′× 1.25′′ cavity removed. We carved a 0.25′′-wide lip around the top of the

cavity for our 6′′× 6′′× 0.25′′ aluminum plate to rest on. Through a small cutout left

for ventilation, we poured liquid nitrogen into the box to uniformly chill the plate.

This was a 1′′ wide × 0.75′′ deep cutout made to give the liquid nitrogen an outlet for

expelling vapor as it boils away. Liquid nitrogen is a colorless clear liquid which boils

at 77 K (-196 ◦C) at atmospheric pressure. While the material is not highly dangerous,

we took certain precautions when handling it, such as using special gloves.
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Thermocouple 
Surface Probe 

Micropipette 

ProScope HR 

Aluminum Plate 

Polystyrene Reservoir 
with Liquid Nitrogen 

Figure 6: A photograph of our experimental setup for freezing water droplets on a metal

surface. A micropipette produces 10-µL water drops onto an aluminum plate that is chilled

from below by a reservoir of liquid Nitrogen. A ProScope HR video camera is used to record

the freezing process, and a thermocouple surface probe is used to record the temperature of

the plate.

The micropipette allowed us to place uniform drops of distilled water onto the

aluminum plate. We used the ProScope to magnify and capture the freezing process,

as seen in the progression of images shown in Fig. 7. By freezing drops at various

plate temperatures (in small increments from about -20 ◦C to -40 ◦C), we were able

to analyze the effect temperature difference has on the solidification process.

(a) (b) (c) 

Figure 7: A succession of photographs taken by our ProScope HR to illustrate the freezing

process: (a) the initial liquid water drop, (b) midway through solidification, and (c) the

frozen drop with its pointy tip.
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3.2 Freezing droplets on dry ice

We also froze water droplets directly onto dry ice, as shown in Fig. 8. We again

made use of the micropipette for dispensing uniform drops, the ProScope for close-up

video capture, and the thermocouple to check the temperature of the surface (which

remained at about -70 ◦C). Special care had to be taken when dropping the liquid

water onto dry ice because the drops often slipped off the side.

It is also important to note that when the room temperature liquid comes into

contact with the dry ice, it melts some of the dry ice, causing the drop to sink down

slightly. We speculate that this may change the physics of the situation, since the sides

of the base of the water drop are now in contact with the dry ice. This phenomenon

will be further discussed in Sec. 6.4.

Thermocouple 
Surface Probe 

ProScope HR 

Dry Ice 

Figure 8: A picture of our experimental setup for freezing water droplets directly onto dry ice.

A ProScope HR is used to record the freezing of 10-µL water droplets, and a thermocouple

surface probe is used to record the temperature of the dry ice.

4 Results

4.1 Experimental observations

After assessing and adjusting the various parameters of the experiment (lighting,

droplet size, camera resolution, etc.), we were able to obtain a clear movie of a

solidifying water droplet on the aluminum plate using the ProScope. Initially, the
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droplet sat on the plate in the shape of a spherical cap. Over a period of about

5−15 s, the drop froze from the base upwards and remained rounded on top for most

of this process. On dry ice, solidification occurred in the same fashion, typically in

about 40 s. It was not until the final moments of solidification that we observed the

formation of the singularity; the pointy tip appeared to spontaneously pop up in the

last second or so.

4.1.1 Analyzying the solidification rate

We performed video analysis using LoggerPro to examine the changing dimensions of

the liquid and solid portions of the drop during solidification for droplets freezing on

three different plate temperatures and on dry ice.

Based on the frame rate of our video file, we manually tracked the height of the

freezing drop every 0.39 s. For each video, we marked the evolution of the solid’s

vertical height fives times in order to calculate an average with appropriate error

bars. In our dry ice video, the liquid drop initially sinks down, therefore we also

tracked the average descent of the top of the drop. We then calculated the distance

the drop sank at each time step and added this discrepancy to the solid height data.

We created a z versus t plot for drops freezing on the aluminum plate (as shown

in Fig. 9). Also included are the theoretical z(t) equations (dotted curves) calculated

from Eq. (30) and the power functions z = AtB calculated to fit each data set (solid

curves). Figure 10 shows the height of the solid layer only in the first 3.2 s of solidifi-

cation, which slightly changed the function of best fit. This time interval was chosen

with trial and error, based on our attempt to demonstrate the data’s
√
t behavior

predicted by our theoretical z(t). It is interesting to note that our model fits best for

the first 3.2 s of drops freezing on colder plate temperatures.

We then created a dz/dt versus t plot (Fig. 11) from the values LoggerPro au-

tomatically calculated during video analysis for one of the droplets freezing on the

aluminum plate. We included our theoretical expectation, (Eq. (31) plotted as a dot-

ted curve), with a power function fit to the data (plotted as a solid curve). Again, we

showed how the power function changes for isolating just the first 3.2 s of data (see

Fig. 12). While the theoretical dz/dt (or even the expectation of 1/
√
t behavior in

general) does not fit as well as the z(t) did for the same data set, we can see a trend

in the decrease in solidification rate over time to a constant velocity. The rate picks

up again, however, in the last second when the singularity appears.

Figure 13 shows z(t) for the water droplet freezing on dry ice. With the 70 K

difference between the dry ice and the water droplet, Eq. (30) predicts a much faster

solidification time than what was experimentally observed and, contrary to our theory,
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Figure 9: Graph of the change in vertical height of the solid layer with respect to time based

on various ∆T . Experimental values were obtained from video analysis with LoggerPro, the

dotted curves are our theoretical expectations calculated from Eq. (30), and the solid curves

are trend lines obtained for the data.
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Figure 10: Graph of the change in vertical height of the solid layer with respect to time based

on various ∆T for the first 3.2 s of solidification. Experimental values were obtained from

video analysis with LoggerPro, the dotted curves are our theoretical expectations calculated

from Eq. (30), and the solid curves are trend lines obtained for the data.

the experimental solidification rate appears to speed up over time.

4.1.2 Experimental issues

We did run into a few experimental issues along the way. The aluminum plate became

so cold that it caused water vapor in the immediate vicinity to condense onto the plate.

This first of all created a thin layer of frost that we would repeatedly have to clear

off, to avoid changing the initial contact angle between the liquid and plate. There

was also fog that interfered with our video capture, because the wafting movement

caused the ProScope to have difficulty focusing on the drop. We somewhat solved

this issue by using a small fan to blow the vapor away.

Additionally, while we tried to account for the sinking of the droplet on dry ice,

it was still difficult to track the solid front in the beginning stages of solidification.

This was mainly due to the presence of bubbles within the drop (from carbon dioxide

being released as the room-temperature water droplet cause some of the dry ice to

sublime) and water vapor around it.
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Figure 11: Graph of the solidification rate dz/dt with respect to time for ∆T = 30 K. The

dotted curve is our theoretical Eq. (31), and the solid curve is a power function fit to the

data.

18



0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

V
el

oc
it

y 
of

 S
ol

id
 L

ay
er

 (
m

m
/s

) 

Time (s) 

Solidification Rate             v. Time,            to 

Figure 12: Graph of the solidification rate dz/dt with respect to time for ∆T = 30 K during

the first 3.2 s of freezing. The dotted curve is our theoretical Eq. (31), and the solid curve

is a power function fit to the data.

19



0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

0 5 10 15 20 25 30 35 

H
ei

gh
t o

f 
So

lid
   

   
(m

m
) 

Time (s) 

Height of  Solid Layer for Drop Freezing on Dry Ice 

Figure 13: Graph of the solid height z(t) of a droplet freezing directly on top of dry ice.

The data points reflect our attempt at normalizing discrepancies caused by the drop sinking

down into the dry ice during solidification. The solid curve is a power function that was fit

to the data, and the dotted curve is calculated from our theoretical Eq. (30).
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4.2 Numerical results

4.2.1 Predicting frozen droplet shapes

We modeled the final shape of freezing droplets with the solidification rate, radius, and

contact angle differential equations (Eqs. (31), (32), and (33) respectively) using Easy

Java Simulations (Ejs) [5] [11]. This programming tool allowed us to efficiently predict

the appearance of a singularity at various density ratios. It provided a simplified

method of simulating the phenomenon, and placed emphasis on the resulting Java

program rather than the heavy programming that might otherwise have been needed

to create it.

Figure 14: The output from our Ejs simulation for a frozen drop with a density ratio ν = 0.9,

initial contact angle θ0 = 2.09 rad, and initial radius R0 = 0.15 arb (left), with a close-up

view of the droplet’s tip (right).

After we defined our first-order differential equations with arbitrary values for

the initial R and θ, we chose to solve our equations with the 4th-order Runge-Kutta

algorithm. We then used the drawable elements in Ejs to create a graphical repre-

sentation of the results. Currently our simulation creates a z versus R plot of the

solidified drop, with a second enlarged graph that focuses in on the drop’s tip, (see

Fig. 14).

With z as our independent variable, we set a small increment size for dz to obtain

detailed information about the tip of the drop (the smaller the increment, the more

accurate our results were). We also defined an event such that the program would

stop running before R went to exactly zero, to avoid the zero denominator that would
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Figure 15: Simulations of various frozen drop shapes based on density ratios ν = 1.0 to 0.6,

with θ0 = 2.09 rad and R0 = 0.15 arb. The Ejs simulation shows how the conical tip becomes

sharper as the density ratio decreases.

result in Eq. (33). This condition did not have any negative effects on the final shape

since our limit was on the order of 10−8.

While ν is the only variable that remains constant during the running simulation,

we designed the program such that we could easily restart it with different ν values

to compare the differences in frozen drop shape. By plotting several solidified shapes

on the same graph (see Fig. 15), we determined that as the density ratio decreased,

the pointy tip became sharper.

We compared one of the experimental data sets from the droplet freezing on

the chilled cold plate to our numerical results. Using the initial radius and contact

angle obtained from video analysis, R0 = 1.5 mm and θ0 = 2.29 rad respectively, we

retrieved the z and R data points generated by our simulation for droplets with a

density ratio of 0.9. Figure 16 shows the experimental and numerical results graphed

on the same axes. From these two data sets we were able to determine the difference

in final drop height, contact angle, and volume.

Straight from the data points, we found that the final drop height from our video

analysis was 3.4 mm, while the numerical results for a droplet of the same initial

radius and contact angle revealed a droplet height of 3.8 mm. Additionally, we saw

that the final θ in our experiment was 0.62 rad, while the simulation produced a final

θ of 0.03 rad. Finally, we calculated the total volume for both data sets by summing
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the small volume change dVs from each dz step,

Vfinal =
n∑
j=0

πR2
j (zj+1 − zj), (48)

where n is the total number of data points (Rj, zj) for either the experimental or

numerical results. We found that the simulation produced a frozen droplet that was

greater in volume by 15%. Not only does our model incorrectly predict a spherical

top (final θ ≈ 0), but it overestimates the size for the solidified water droplet.
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Figure 16: Graph of the frozen droplet dimensions as determined by our numerical results

for ν = 0.9 and compared with the experimental results. The data generated from our

simulation was obtained such that it matched the R0 = 1.5 mm and θ0 = 2.29 rad from our

experiment.

4.2.2 Analyzing the differential equations

We used our Ejs program to create a graph of the final contact angle versus the

density ratio, as seen in Fig. 17. By defining an event to store the resulting final

contact angle for different ν, we ran the simulation over and over again, under the

same initial conditions, while varying ν in small increments. From these collected

values, we produced a graph similar to the positive quadrant of Fig. 4. Our program

produced a flat-topped droplet for freezing liquids that have the same density in solid

form (ν = 1), and it predicted the appearance of a singularity for liquids that have
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a density ratio less than about 0.78. This is slightly higher than the critical density

ratio of 0.75 that we determined in Sec. 2.3.2.
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Figure 17: The final contact angle θ as a function of density ratio ν, generated by the

numerical results of our Ejs simulation and the theoretical results of Eq. (46) (as seen in

the positive quadrant of Fig. 4).

4.2.3 Creating an animation

We used our geometric model to produce a real-time animation of the freezing process

by breaking down the solidifying drop into its liquid and solid portions. We generated

an image at each time step, during which the computer program simulated the shape

of the frozen half of the drop using the results for a density ratio ν = 0.9 and the

shape of the liquid portion using the results for ν = 1.0 (corresponding to a flat-top,

spherical cap shape). Since our Ejs program could not simultaneously handle the

two components with their separate density ratios, we manually coded a new Java

program to perform this task [11].

After collecting a series of frames of the intermediate droplet shapes, some of

which are seen in Fig. 18, we used ImageJ [12] to create a GIF file. The animation

runs on a loop for roughly 9.5 s, which was established based on the solidification rate

equation with ∆T = 40 K and is a fairly accurate representation of our experimentally

observed freezing times under these conditions. When played at the same time as our

video (with the droplet freezing on an aluminum plate at about Tc = −40 ◦C), the

GIF runs slightly faster than the experimental solidification speed (see Fig. 19).
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Figure 18: These images represent separate stages in a real-time animation of a water

droplet transforming into a solid, rounded structure. Each frame was generated using our

Java program [11] for a droplet with ν = 0.9.

5 Discussion

Each of the two freezing methods had its own advantages and disadvantages. When we

placed droplets directly on dry ice, they froze slower (probably because heat transfer is

slower between water and dry ice versus the highly conductive metal plate). However,

these videos are not as clear because there is a lot of frost and vapors flying around;

additionally, the drop initially sinks down into the dry ice, which makes it difficult to

immediately begin video analysis of the height of the solid. The temperature of the

ice did remain at a constant -70 ◦C throughout our experiments.

The metal plate provided a uniformly-chilled, flat surface on which the droplets

could freeze. However, the formation of frost and condensed vapor often changed

the initial contact angle between the liquid and the plate if it was not completely

cleared off. The temperature of the plate was constantly changing, either increasing

or decreasing depending on whether the liquid Nitrogen was boiling away or when we

added more to the polystyrene reservoir, respectively.

It makes sense that a density ratio of less than one would produce a conical drop.

According to mass conservation, a solid volume being slightly larger than the liquid

volume means the solid density must have been slightly smaller than that of the liquid.

Furthermore, while the simplified model does predict the formation of singularities,
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it does not accurately predict the shape of frozen water droplets, which have an

approximate density ratio of 0.9. This can be seen in the quantitative comparison in

Fig. 16 and the qualitative comparison in Fig. 19, where we overlay our experimental

result with our numerical simulation. There is unfortunately a large gap between the

experimental and our theoretically determined solid volume. This difference could be

due to the neglect of some other parameter important to solidification, which may

cause the radius and contact angle differential equations to approach zero too slowly.

tf tm 

Figure 19: Screenshots from our experimental video (at a point tm midway through and tf

at the end of solidification) compared with two frames from our animation (overlaid in red)

generated by the simulation for a frozen water drop with ν = 0.9 under the same initial

conditions.

The solidification height graphs we determined from our experimental data (Figs. 9

and 11) roughly match the square-root behavior we expected from our theoretical

Eq. (30) and its derivative. However, after plugging in the appropriate values, neither

provides a sufficient fit to the data. The model appears to be most accurate for the

first 3 s of drops freezing on a very cold aluminum plate (shown in Fig. 10). This

could suggest that the one-dimensional temperature field is a fair approximation only

during the initial moments of solidification.

It is also important to note that the z(t) data for drops freezing directly on dry

ice exhibit a unique behavior, as seen in the comparison with our theoretical model

in Fig. 13. Our current model does not satisfy this, which means that our simplified

way of looking at the thermal energy transfer within the solid portion of the drop

cannot be applied to all types of freezing methods.

One final point of interest is the spontaneous quickening of the solidification rate

at the end of the freezing process when the singularity appears. This is unfortunately

something that cannot easily be studied from our videos, since the contact line be-

comes blurred towards the top of the drop. As seen from the larger error bars for the
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data in the last second of solidification in Fig. 11, it is especially difficult to track the

height of the solid layer in these final moments.

6 Modifying the theory

Previous research suggests the importance of taking a curved solid-liquid contact line

into account for higher accuracy when modeling containerless solidification of sessile

water droplets [13]. Specifically in one experimental video, a water droplet freezing

directly on dry ice exhibits an unmistakably curved interface [6]. Figure 20 shows

how the interface becomes increasingly curved as the drop solidifies.

A B 

C D 

Figure 20: Photographs of the curved solid-liquid interface captured during previous research

in this field [6]. A and C show the drop at two different points during solidification, whereas

B and D show the solid portion of the drop after the liquid has been removed at the same

respective points in time.

6.1 Curved Interface model

We looked briefly into the possibility of deriving a boundary-integral simulation, which

would model the evolution of the three interfaces (solid-liquid, liquid-vapor, and solid-

vapor) by means of the Green’s function technique [14]. However, the complexity of

this method appeared to be too involved for the limited amount of time we have for
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our research. Despite that, it is possible to continue with a purely geometric approach

for modeling this new parameter of the freezing process.

It is important to note that our solidification rate equation, Eq. (31), was derived

from a one-dimensional temperature field assumption. However, because we are con-

sidering a curved contact line, we can no longer be sure that heat flux is independent

of radius R. In fact, one might argue that the more complicated temperature gradient

justifies a curved solid-liquid interface model. The more-isolated water molecules on

the edges of the drop, which are colder, will lose thermal energy (and therefore freeze)

faster. We therefore put aside our solidification rate equation and derive our radius,

volume, and contact angle differential equations according to their dependence on the

rising height z of the solid layer instead of time t.

solid 
z

Figure 21: A diagram of the freezing droplet with a curved solid-liquid interface, which we

attempt to model with an upside-down spherical cap. Note that we gain a new angle α,

however our definitions for R, z, and θ are the same as in Fig. 1.

We illustrate this curve as if it is an upside-down spherical cap and define the

same distances for z, R, and θ, as seen in Fig. 21. Hence, our changing radius is

essentially the same as with our original model,

dR

dz
= − 1

tan θ
. (49)

Our liquid volume, changing volume, and changing contact angle equations are re-

derived based on the new geometric configuration. Additionally, we define the new

angle α of our upside-down spherical cap, as seen in Fig. 21.

Similar to our previous derivations of the spherical cap dimensions, we begin by

constructing an equation for the radius of curvature Rc of the upside-down spherical

cap (Fig. 22). To do so, we use the condition that the interface begins flat and then

becomes increasingly spherical during solidification [13].

Our definition of Rc therefore has to include the conditions that at the beginning

(z = 0) we should have a flat interface (Rc = ∞), and when z approaches zmax,

Rc should approach R (which is approaching zero). One function that exhibits this
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Figure 22: A representation of our upside-down spherical cap in the context of a complete

sphere, used to derive the liquid volume and equation for α. Note, the radius of our spherical

cap is still R, while Rc is the radius of the full sphere, and h is the height from the center

of the sphere to the base of the cap.

behavior is

Rc = R eβ(zmax−z)/z, (50)

where zmax (corresponding to an approximate final drop height) and β (controlling

how fast the interface becomes increasingly curved) are free-parameters that we ad-

just.

We use Eq. (50) and the geometry in Fig. 22 to find

sinα =
R

Rc

= e−β(zmax−z)/z. (51)

Using Mathematica [15], we obtain the derivative of this equation with respect to z

dα

dz
=
βzmax tanα

z2
. (52)

Similar to our original model, we look at mass conservation between the liquid

and solid to derive a dVl/dz equation. The interface is curved, therefore we model the

small interval volume of newly frozen solid as a spherical cap area Asc with a thickness

dτ , as shown in Fig. 23. We obtain the area of a spherical cap by integrating the

circumference of a circle over a certain height, and putting this equation in terms of

only R and α,

Asc = 2πR2

(
1

1 + cosα

)
. (53)

Additionally, we derive an equation for the thickness of the solidification front dτ in
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solid 

Figure 23: A zoomed in portion of the increasing dVs slice, taking into consideration a

curved solid-liquid contact line. The thickness of this segment is dτ , whereas ds is the

increasing length of the solid-vapor interface. The geometry presented here helps us derive

Eq. (57).

terms of dz based on the geometry of the dVs slice,

dτ = sin (θ + α)ds, (54)

dz

ds
= sin θ

dτ =

(
sin (θ + α)

sin θ

)
dz, (55)

which really describes the dτ and dz in terms of dt. We can now use these relations

to create an equation for dVs/dt = Asc(dτ/dt),

dVs
dt

= 2πR2

(
1

1 + cosα

)(
sin (θ + α)

sin θ

)
dz

dt
, (56)

to substitute into Eq. (13). If we solve for dVl/dz and use our density ratio, we end

up with
dVl
dz

= −ν 2πR2

(
1

1 + cosα

)(
sin (θ + α)

sin θ

)
. (57)

Using the same methods as mentioned in Sec. 2, our new total liquid volume

(shown in Fig. 24) is simply going to be the original spherical cap volume (in terms

of R and θ) plus the volume of our upside down spherical cap (in terms of R and α),

Vl(R, θ, α) = Vsc(R, θ) + Vsc(R,α)

=
πR3

3

(
2− 3 cos θ + cos3 θ

sin3 θ
+

2− 3 cosα + cos3 α

sin3 α

)
. (58)

We finally derive an equation for the contact angle by taking the derivative of

Eq. (58),
dVl
dz

=
∂Vl
∂R

dR

dz
+
∂Vl
∂θ

dθ

dz
+
∂Vl
∂α

dα

dz
, (59)
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Figure 24: A representation of our total liquid volume, if we assume the freezing front is

curved. Note our original spherical cap, with parameters R and θ, and the upside-down

spherical cap, with parameters R and α. The relatives sizes of each sphere in this schematic

are arbitrary.

solving for dθ/dz, and plugging in each term that we know (see Appendix A.2) to get

dθ

dz
=

4

R
cos4

(
θ

2

)[
1− 2ν sin(θ + α)

(1 + cosα) sin θ
− 1

4 cos 4 (θ/2)

+
tanα

tan θ
− (z2 −Rβzmax tan θ) tanα

4z2 tan θ cos 4 (α/2)

]
, (60)

where β and zmax are free-parameters, and α is defined as

α = sin −1(e−β(zmax−z)/z). (61)

Using the equations for the changing radius R and contact angle θ, Eqs. (49) and (60)

respectively, we should theoretically be able to predict frozen droplet shapes that are

assumed to have a curved solid-liquid interface.

6.2 Experimental observations

Our goal was to either verify or disprove the curved interface in our own experiments.

To do so, we used a regular-sized pipette to produce much larger water droplets (on

the scale of mL), which we then froze by placing them directly onto dry ice. This

freezing method was favored over using the cold plate apparatus, because droplets

froze more slowly on the dry ice. Once the droplet was partially frozen, we used an

empty pipette to quickly retract the remaining unfrozen liquid, in order to observe

the shape of the freezing front. We repeated this process with several drops, taking

away the unfrozen liquid at various points during solidification. While it was difficult

to completely remove all of this liquid before the center started to freeze again, we
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were able to observe the outer rim, which had a very slight curve. Overall, however,

the drop appeared to have a relatively flat solid front, as shown in Fig. 25.

Figure 25: A photograph of a half-frozen water droplet from which we removed the top

unfrozen liquid portion. The freezing front appears to be flat, which is inconsistent with our

curved-interface theoretical approach.

(a) (b) (c) 

Figure 26: Series of images taken midway through the solidification of sessile water droplets.

Note the differences in freezing front shapes between (a), (b), and (c).

Additionally, we present a few interesting examples of variously shaped freezing

fronts that were observed: Fig. 26(a) has a very flat solid-liquid contact line, due to

careful and even release of the drop onto the cold plate, Fig. 26(b) has an antisym-

metric front due to a portion of the drop touching the cold metal ruler and therefore

freezing faster on that side, and Fig. 26(c) has a lopsided solid-liquid interface, due

one portion of the drop touching the cold plate and inadvertently starting to freeze

before the liquid was completely released from the micropipette.

6.3 Numerical results

Taking a similar approach as with our Flat Interface model, we attempt to model a

curved interface by updating our computer simulation with Eqs. (49), (60), and (61).
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The graphical output we receive reveals that the simulation blows up after a certain

point.

After breaking down the equation into parts, we have isolated a possible problem

with the new dθ/dz equation, which contains our β free-parameter. For the purposes

of troubleshooting, we made zmax very large such that it does not drastically effect our

model. When β = 1 we see a highly flattened spherical drop, and when β = 0.00001

the sides of the drop vertically climb with no clear sign of convergence. However,

when we attempt to use a value of β between these two extremes, we are seeing

strange behavior that we are currently unable to explain.

6.4 Discussion

Theoretically, we believe our newly derived radius and contact angle differential equa-

tions are an accurate representation of how solidification would occur with a curved

solid-liquid contact line. However when we insert these into our simulation, we are

currently not seeing intelligible results.

Our experimental video of a water droplet freezing on our cold plate apparatus,

taken at a perfectly horizontal angle, shows that the solid-liquid interface is very flat.

We speculate that videos of solidifying sessile droplets showing a curved contact line

contain this curve based on the initial conditions of the drop (for instance, the shape

of the surface the drop is placed on, how carefully the drop is placed down, or the

freezing method utilized).

It is important to note that the video from previous research exploring the contact

line shape [6] shows the water droplet being dispensed into a small crater in the

dry ice. This was presumably hollowed out to avoid the difficulties of having the

liquid droplet slip off the piece of dry ice, which we described in our own experiment

(Sec. 3.2). However, it is possible that this precaution was actually the cause of the

formation of a curved interface. If the water droplet began solidifying in a spherical

crater, it would inevitably cause the freezing front to take on the same shape.

Even without hollowing out a crater, when dropping water onto dry ice, it initially

sinks down, inadvertently making the sides of the liquid drop near its base colder than

the rest of the drop. Similarly, when freezing on the metal plate, the aluminum is so

cold that it cools off the air directly above it, which means the sides of the liquid drop

around the base are colder than other parts of the unfrozen drop. Thermal diffusivity

is slightly dependent on temperature [16], therefore heat is transferred faster in these

colder areas of the drop, translating to the sides of the drop beginning to freeze

faster. This is also supported from the fact that we see various freezing front shapes

(Fig. 26) based on which part of the water droplet touched a cold metal surface first.
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Therefore, it may not be necessary to attempt to incorporate a curved interface into

our geometric model.

7 Conclusion

Our research focused on analyzing freezing sessile water droplets; specifically we were

interested in the singular tip that forms on the spherical liquid drops after solidifi-

cation. Due to the volume of a solid drop with a pointy tip being greater than the

volume of the original liquid sphere cap, the density of the solid has to be less than

the density of the liquid in order for mass to be conserved. This phenomenon occurs

for liquids that expand during freezing.

We created two purely geometric theoretical models to mathematically describe

how the drops froze. Both models assume the unfrozen liquid begins in the shape of

a spherical cap and that the slope of the solid layer equals that of the liquid layer

during solidification. We derived a set of differential equations to describe how the

volume, radius, and contact angle of the unfrozen liquid change with respect to the

increasing dz of the solid front. We generated two computer programs to simulate

the shape of the frozen droplet based on our two mathematical models.

The first model assumed that the solid-liquid interface is a flat line. This allowed

us to theorize a simple, one-dimensional temperature field between the contact line

and the plate, which gave rise to a solidification rate equation to describe how the

height of the solid layer changed in time dt. When we analyzed the stability of these

equations, we determined that ν = 0.75 is a critical density ratio, below which pointy

drops will appear. The analysis helped us understand that even though a flat frozen

drop with a final θ = 0 is a solution for all ν, we will not see this in realty when

ν < 0.75 because small perturbations away from θ = 0 result in the system evolving

away from θ = 0.

For our experiment, we built an apparatus that allowed us to observe small purified

water droplets freezing on an aluminum plate, which was cooled from beneath by a

liquid Nitrogen bath, as well as directly on dry ice. We recorded close-up videos of the

solidification at various plate temperatures with a ProScope camera. We performed

video analysis to obtain data on the R, θ, and z values at each time step. We looked at

how the speed of the solid height changes with respect to the temperature difference

between the cold plate and the freezing temperature, and found that the droplet

freezes faster at colder plate temperatures, however it is difficult to draw conclusions

from our analysis of droplets freezing on dry ice.

With the Flat Interface model, our computer program predicted the appearance
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of the pointy tip for liquids with a density ratio less than 0.78, which was slightly

higher than our theoretically determined critical ratio of 0.75. This program, however,

did not accurately simulate the singularity which we experimentally observed for

water droplets, with a density ratio of about 0.9. By comparing the experimental

and numerical results, we found that the simulation predicts spherical frozen water

droplets with about 15% larger volume than our observations.

Since our planar solid-liquid contact line model appeared incomplete, we consid-

ered a curved contact line, which had been described as being an important factor in

previous research (see, for instance, Fig. 20).

In our second geometric model, we kept our differential equations in terms of

dz, since a curved contact line would mean there is probably a more complicated

temperature field within the drop, and we therefore could not use our solidification

rate equation. We did, however, derive a new equation to describe how the curve of

the interface evolves during solidification. At this time, we are unfortunately unable

to receive intelligible results from our program containing the Curved Interface model.

To experimentally investigate the shape of the solid-liquid contact line, we used

much larger drops on dry ice, which froze slower, in order to remove portions of

the unfrozen liquid sphere cap during solidification. At this time, we do not have

conclusive evidence of a highly curved interface. The slight curve we observed could

be due to the initial freezing conditions, and not necessarily an intrinsic property of

droplet solidification.

This research helped us understand how the appearance of the singularity is de-

pendent on the density ratio ν. We were able to both observe and create a general

working model of this phenomenon. It began with reproducing a previously derived

mathematical model [2], along with our own version of their experiment and simu-

lation. We then expanded our work by drawing upon other research techniques [6]

and theories [8]. Finally, we invented a new geometric model, which avoided the use

of complicated boundary integral methods [13] [14], that was both valuable to and

appropriate for an undergraduate level research project.

8 Suggestions for Further Research

It would be beneficial to revisit our derivation of the solidification rate. Our current

model simplifies the situation by only looking at heat conduction within the frozen

portion of the water droplet. However, we should be taking into account the cold

surface that the drop sits on as being part of the system through which thermal energy

is being transferred. There is definitely a difference between the thermal conductivity

35



of an aluminum plate and the thermal conductivity of dry ice, which could account

for the difference we see between the z(t) graphs for each freezing method.

Further research could investigate a mathematical model that considers the com-

plicated tri-junction situation, as shown in Fig. 27. This model assumes that the

slope of the solid layer does not equal the slope of the liquid layer during solidifi-

cation, which means there is a growth angle between the two tangents. There is a

subtle difference between the velocities of the liquid-vapor and solid-vapor interfaces,

on the scale of µm/s [8], which may have an important role in determining the final

drop profile. It would also be interesting to obtain experimental verification of the

discontinuity in the slopes at the tri-junction. Our own experimental videos do not

have a high enough resolution, and as of right now, there does not appear to be any

photographs of this accepted phenomenon.

Figure 27: A diagram of the solidifying sessile water droplet that takes the complicated tri-

junction into consideration. At the point where the solid, liquid, and vapor meet, the slope

of the solid layer is slightly larger than the slope of the liquid layer, which gives rise to a

growth angle φi between them. This angle is small and almost negligible at the beginning of

solidification, and it gets much larger as the solid-liquid contact line approaches the top of

the drop. [8]

A Deriving the contact angle differential equations

A.1 Flat Interface model

To derive how the contact angle θ changes with respect to the small height increment

dz, we must first start with differentiating our equation for the volume of a spherical
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cap Eq. (11) with respect to z

dVl
dz

=
∂Vl
∂R

dR

dz
+
∂Vl
∂θ

dθ

dz
, (62)

where the partial derivatives for Vl with respect to R and θ are

∂Vl
∂R

= πR2

(
2− 3 cos θ + cos3 θ

sin3 θ

)
(63)

∂Vl
∂θ

=
πR3

3

(
sin3 θ(3 sin θ + 3 cos2 θ(− sin θ))

sin6 θ

)
−
(

(2− 3 cos θ + cos3 θ)(3 sin2 θ cos θ)

sin6 θ

)
= πR3

(
sin2 θ − cos2 θ sin2 θ − 2 cos θ + 3 cos2 θ − cos4 θ

sin4 θ

)
. (64)

We solve Eq. (62) for dθ/dz

dθ

dz
=

∂θ

∂Vl

(
dVl
dz
− dR

dt

∂Vl
∂R

)
, (65)

and then substitute Eqs. (15), (17), (63), and (64) into this to end up with

dθ

dz
=

1

πR3

[
sin4 θ

sin2 θ − cos2 θ sin2 θ − 2 cos θ + 3 cos2 θ − cos4 θ

]
×
[
−νπR2 −

(
− cos θ

sin θ

)(
πR2 2− 3 cos θ + cos3 θ

sin3 θ

)]
(66)

which simplifies to our differential equation for the shrinking contact angle [2]

dθ

dz
= − 1

R
[ν − (1− ν)(2 cos θ + cos 2θ)]. (67)

A.2 Curved Interface model

To derive how the contact angle θ changes with respect to the height of the solid

front dz, we must first start by differentiating our equation for the total volume of

the liquid portion Eq. (58) with respect to z

dVl
dz

=
∂Vl
∂R

dR

dz
+
∂Vl
∂θ

dθ

dz
+
∂Vl
∂α

dα

dz
, (68)

which we solve for dθ/dz

dθ

dz
=

∂θ

∂Vl

[
dVl
dz
− ∂Vl
∂R

dR

dz
− ∂Vl
∂α

dα

dz

]
. (69)
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We have the partial derivatives ∂Vl/∂R Eq. (63) and ∂θ/∂Vl Eq. (64) from Sec. A.1,

and we can use a similar approach for the ∂Vl/∂α partial derivative

∂Vl
∂α

= πR3

(
sin2 α− cos2 α sin2 α− 2 cosα + 3 cos2 α− cos4 α

sin4 α

)
. (70)

We substitute in our equations for dR/dZ Eq. (17), dVl/dz Eq. (15), and dα/dz

Eq. (52). After careful simplification, we finish with the following equation for the

changing contact angle of a liquid drop freezing with a curved interface,

dθ

dz
=

4

R
cos4

(
θ

2

)[
1− 2ν sin(θ + α)

(1 + cosα) sin θ
− 1

4 cos 4 (θ/2)

+
tanα

tan θ
− tanα(z2 −Rβzmax tan θ)

4z2 tan θ cos 4 (α/2)

]
, (71)

where α is defined as,

α = sin
−1

(e−β(Zmax−z)/z), (72)

and β and zmax are free parameters.

References

[1] S. Strogatz, “Singular Sensations,” Opinionator, The New York Times, (2012).

[2] J. H. Snoeijer and P. Brunet, Pointy ice-drops: How water freezes into a singular

shape, Am. J. Phys. 80, 764-771 (2012).

[3] K. Han and B. Michael, “Effects of Leading-Edge Ice Accretion Geometry on

Airfoil Performance,” 17th Applied Aerodynamics Conference, Am. Inst. of Aero-

nautics and Astronautics, 379-390 (1999).

[4] Bodelin Technologies. Lake Oswego, Oregon. “ProScope HR2: Specifications.”

(2012).

[5] F. Esquembre, “Easy Java Simulations: The Manual.” Ver. 3.4 (2005).

[6] M. Nauenberg, Comment on “Pointy ice-drops: How water freezes into a singular

shape”, Am. J. Phys. 81, 150-151 (2013).

[7] J. B. Fourier, The Analytical Theory of Heat. Trans. A. Freeman, (Dover Pub-

lishers, New York, 1955)

[8] D. M. Anderson, M. G. Worster, S. H. Davis, The case for a dynamic contact

angle in containerless solidification, J. of Crystal Growth 163, 329-338, (1996).

38



[9] Acknowledgements to L. English, Associate Professor of Physics at Dickinson

College (Carlisle, PA), for help with the bifurcation and stability analysis (2013).

[10] Vernier Software and Technology. Beaverton, Oregon. “LoggerPro: Quick Refer-

ence.” (2013).

[11] Acknowledgements to D. Lifschitz, Physics and Math major ‘13 at Dickinson

College (Carlisle, PA), for coding the Ejs and Java programs (2013).

[12] T. Ferreira and W. Rasband, “ImageJ: User Guide.” Ver. IJ 1.46r (2012).

[13] W. W. Schultz, M. G. Worster, D. M. Anderson, “Solidifying Sessile Wa-

ter Droplets,” Interactive Dynamics of Convection and Solidification. 209-226

(Kluwer Academic Publishers, The Netherlands, 2001).

[14] V. S. Ajaev and S. H. Davis, Boundary-integral simulations of containerless so-

lidification, J. of Computational Phys. 187, 492-503 (2003).

[15] S. Wolfram, “Wolfram Mathematica 9: Documentation Center.” (2013).

[16] Ice - Thermal Properties, Engineering Toolbox, (1 Mar 2013)

http://www.engineeringtoolbox.com/ice-thermal-properties-d 576.html.

39


	Dickinson College
	Dickinson Scholar
	5-19-2013

	Analyzing the Singularities of Freezing Sessile Water Droplets
	Melia Elizabeth Bonomo
	Recommended Citation



