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An Ising machine based on networks of
subharmonic electrical resonators

L. Q. English TBA Y, Zampetaki2'5, K. P. Kalinin3®, N. G. Berloff® 3 & P. G. Kevrekidis?

Combinatorial optimization problems are difficult to solve with conventional algorithms. Here
we explore networks of nonlinear electronic oscillators evolving dynamically towards the
solution to such problems. We show that when driven into subharmonic response, such
oscillator networks can minimize the Ising Hamiltonian on non-trivial antiferromagnetically-
coupled 3-regular graphs. In this context, the spin-up and spin-down states of the Ising
machine are represented by the oscillators’ response at the even or odd driving cycles. Our
experimental setting of driven nonlinear oscillators coupled via a programmable switch
matrix leads to a unique energy minimizer when one exists, and probes frustration where
appropriate. Theoretical modeling of the electronic oscillators and their couplings allows us to
accurately reproduce the qualitative features of the experimental results and extends the
results to larger graphs. This suggests the promise of this setup as a prototypical one for
exploring the capabilities of such an unconventional computing platform.
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energy and time-efficient manner ignites the race to

implement classical state-of-the-art optimisation techni-
ques on traditional hardware. The implementation of the simu-
lated annealing leads to a traditional classical solver, on
complementary metaloxide-semiconductors (CMOSs) hardware
results in the CMOS annealer!:, and with field programmable
arrays (FPGAs) it is known as the digital annealer machine3*.
The realisation of another physics-inspired method on graphics
processing units (GPUs) underlies the simulated bifurcation
machine>®, With such mature dedicated hardware, the compu-
tational performance of classical optimisation methods can be
studied on a large scale of hundreds of thousands of elements.

Novel computing paradigms can be based on novel physical
platforms augmented by traditional hardware. In such a hybrid
approach, the optimisation efficiency depends not only on clas-
sical algorithms, and the better quality of solutions is expected
from natural internal processes in physical systems, while the
classical hardware provides interactions between physical ele-
ments. For example, the FPGA operates in concert with the
optical parametric oscillators’ and the spatial light modulator can
create couplings between polariton condensates®? for solving
hard optimisation problems.

To overcome the time limitations of traditional hardware, the
pure passive unconventional computing architectures can be
considered. In these architectures, the solution to the optimisa-
tion problem is found solely through an analogue system without
exchanging information with the classical counterparts. The
memristors (short for memory resistors) can perform matrix-
vector multiplications according to Ohm’s and Kirchhoff’s laws in
a completely analogue way!?. Circuits of memristors (memristor
crossbars) are used for simulating neural networks!1-13 including
Hopfield networks for solving hard optimisation problems!4. A
further improvement in power consumption over memristor-
based Hopfield networks is expected for networks of phase-
transition nano-oscillators with capacitive couplings!®. These
beyond-traditional hardware approaches!®-18, as well as all-
optical passive computing architectures with a similar principle of
in-memory computing!®-?2, are naturally suitable for highly
parallel calculations and offer orders-of-magnitude higher energy
efficiency than classical devices. Many more physical systems are
under intense investigation as quadratic unconstrained binary
optimisation (QUBO) solvers in the post-CMOS era including
lasers?3-26, photonic simulators?’, trapped ions?®, photon and
polariton condensates??30, QED31:32, and others33-3~,

The electronic and optical oscillator-based unconventional
computing machines are generally applied to the minimization of
spin Hamiltonians, to which many of the real-life optimisation
problems can be mapped with a polynomial overhead>®. One of the
challenges in assessing the potential optimisation performance of
such platforms is caused by the choice of instances of NP-hard
problems. For example, minimising the Ising spin Hamiltonian on
unweighted 3-regular graphs is proven to be NP-hard3’, while for a
subclass of Mobius ladder graphs, which are often chosen for
testing non-traditional computing platforms”-1>33-3538-40 the
Ising model can be minimized in polynomial time?!.

To develop new physics-inspired algorithms and explore non-trivial
ways for escaping local minima of complex optimisation problems, the
easy-to-assemble circuits of electronic oscillators could be considered.
Although this is a well-studied classical system, there are only a mere
handful of works with physical implementations of oscillator-based
circuits, with most studies devoted to theoretical and numerical sim-
plified models*2, which do not necessarily represent internal physical
processes that can be critical to optimisation performance. There exist
many types of electrical oscillators one may use for computing. The
vertex coloring problem of unweighted graphs has been recently

The desire to solve complex combinatorial problems in an

addressed with small networks of five coupled relaxation oscillators
with capacitive connections*>. An integrated circuit of 30 relaxation
oscillators with programmable couplings was implemented for solving
the maximum independent set problem*!. The all-electronic Ising
Machine has been explored with weighted resistive couplings for four
CMOS LC oscillators*® with larger network of 240 oscillators imple-
mented on a chimera-graph architecture®®.

In this work, we explore possible global optimisation
mechanisms that could help evaluate the new small-size physical
solvers by minimising the Ising Hamiltonian with fundamental
passive electrical circuit elements: the resistor, the capacitor and
the inductor, in the presence of nonlinearity. The electrical net-
work of such RLC oscillators is an example of a purely classical
computing system implemented on CMOS. For such electronic
oscillator networks, we show the difference between the Ising
minimization of the trivial problems, such as Max 3-regular cut
on the Mobius ladder graphs, and the non-trivial, such as on the
rewired Mobius ladder graphs and on random 3-regular graphs.
The ground state success probability for non-trivial problems can
be dramatically increased using the dynamic control of the
inductance, the optimal value of which helps to efficiently escape
the local minima. We discuss possible ways for creating easy-
reconfigurable couplings between oscillators and possibilities for
the large-scale on-chip integration of electronic circuits.

Other recent studies have utilized CMOS electronic relaxation
oscillators and, through chip integration, engineered considerable
system sizes*44047. Our implementation allows for the formula-
tion of physically realistic equations of motion, and thus one
emphasis of this paper is on the physics-based exploration of the
energy minimizer as a dynamical-systems process.

Results

Experimental setup. The basic idea is to drive a collection of
nonlinear oscillators at a frequency that is roughly twice their
natural frequency, w,=2wo, such that subharmonic resonance is
induced in them (see also ref. 48). Subharmonic resonance is a
nonlinear phenomenon and (in the case of an isolated oscillator) its
onset occurs above a threshold amplitude in the driving signal#®. Tt
is characterized by an oscillator response that repeats every other
driver period. Therefore, two response states are conceivable?2,
namely an oscillator response corresponding to either even or odd
driving cycles. These two oscillator states will represent the basic
“spin-up” and “spin-down” states of the Ising machine.

While the earlier work of ref. 42 proposed generic nonlinear
oscillators driven by dedicated noise generators to induce
parametric resonance, this is not feasible with the nonlinear
RLC oscillators used here. Instead, we employ a single sinusoidal
voltage signal (from a function generator) to drive all oscillators
via capacitors into subharmonic resonance, as shown in Fig. 1.
The oscillator consists of a varactor diode (NTE 618), featuring a
nonlinear dependence of the capacitance on the voltage C(V), and
an inductor, L. The coupling between a given pair of oscillators is
achieved via resistors. Resistors connected straight across (red,
labeled R.+)) favor in-phase oscillation between the two
oscillators, whereas crossed resistors (blue, labeled R.(—)) favor
out-of-phase oscillation. The measured resistances of R -resistors
were the same to within 1%, the inductor values to within 0.25%,
and the capacitors to within 1%.

Figure 2a schematically depicts the experimental system for a
network of eight subharmonic resonators. The main experimental
challenge is to connect these eight oscillators via a programmable and
reconfigurable coupling network. Our solution was to use a switch-
matrix module that can be configured (via the terminal block) into a
two-wire 8 x 32 cross-point matrix. The 8 analog-in channels of a data
acquisition card (NI PXIe-6366) are synchronized to the start of the

2 COMMUNICATIONS PHYSICS | (2022)5:333 | https://doi.org/10.1038/s42005-022-01111-x | www.nature.com/commsphys


www.nature.com/commsphys

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01111-x

ARTICLE

Vg(t) c(v) L

‘,|||_

Fig. 1 Pairwise oscillator coupling. The main idea of coupling between
nodes is illustrated here using a pair of oscillators, each consisting of a
varactor diode, with capacitance C(V), and an inductor, L, in parallel. These
are driven via capacitors, Cg, to induce subharmonic oscillations, for which
® = wy/2. The two oscillators can be either positively coupled using the
resistor pair labeled R.(+) (red), or negatively using the resistor pair
labeled R.(—) (blue). The oscillations across each oscillator's diode/
inductor are measured as a floating voltage.

driving signal via a pulse generator and digitize the voltage profiles at
all eight oscillators. The coupling scheme is illustrated in greater detail
in Fig. 2b, which shows the example of a negative coupling between
oscillator 1 and 3. There are eight inputs to the module arranged
vertically on the left (three of which are depicted), and 16 used outputs
arranged horizontally at the bottom (again three are shown). The first
eight outputs (not shown) are responsible for positive coupling
between oscillator pairs, and the next eight outputs (three shown) are
responsible for the negative coupling. The latter is accomplished by
crossing the wire at the bottom before feeding it back in to the
respective oscillator. By closing that particular switch-pair (see solid
circles), oscillators 1 and 3 are connected in the same manner as
represented by the blue resistors in Fig. 1. While any oscillator pair
can be independently coupled (either positively or negatively) in this
way, note that this scheme does not allow for individual pairs to have
different coupling strengths.

Modeling the experimental system. As was shown in ref. 0, we
can model the varactor diode, the nonlinear circuit element, as a
parallel combination of three idealized components: a nonlinear
capacitor of variable capacitance, C(V), a nonlinear resistor whose
current-voltage relationship is given by Ip(V), and a nonlinear dis-
sipation resistance, R;. We then apply the Kirchhoft loop rule using two
loops around the circuit shown in Fig. 1, while also keeping mathe-
matical track of the currents entering the nth node through the top
capacitor and exiting through the lower capacitor. The detailed steps in
the analysis are relegated to the “Methods” section; here we show only
the final set of non-dimensionalized equations of motion governing
this electrical network that will be used for the simulation results
presented below. More specifically, the voltage dynamics for each
oscillator (indexed by ) reads:

[1 + 2c(vn)] % =Qcos(Qr1) — 2 (&) v,

T 7. \R
1
+2 [iD(Vn) - yn] - T_ZBnm(Vn + vm)? (1)
dy

n__

=
dr "
where the symbols are defined as follows in terms of the measurable
circuit quantities: v, = V,,/A, with A being the amplitude of the driving
signal and V,, the voltage across the diode; y,, = Y,,/(ACw,), with Y,
representing the current through the inductor. Similarly, ip=Ip/
(AC ), where In(V) is the voltage-dependent current through the
varactor diode. C(V) is the voltage-dependent capacitance of the diode,
and ¢ = C(V)/C,. (Both functions, I, and C, are given in the Methods
section.) Furthermore, w, =1/ \/E; and 7= wyt, and Q = w/w,
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Fig. 2 Experimental Network Implementation. a Schematic of the basic
experimental setup: the oscillator-system is driven sinusoidally, starting at
the trigger of the pulse generator, which also initiates the data collection at
the DAQ board. The oscillators are impedance-isolated from the Al
channels of the DAQ via buffers. The coupling network connecting the
oscillators is established via a terminal block (TB-2644) set to the 2-wire
8-32 configuration, and the switch-matrix unit (PXI-2532). b A more
detailed view of the coupling network using the switch matrix: there are 8
inputs and 32 outputs in this configuration (16 of which are used). The
inputs connect directly to the oscillators. The first eight outputs connect
back to the inputs in a one-to-one fashion, but the second eight outputs
shown in this figure cross the two wires before connecting back, as shown.
The electrical switches at the cross-points of this switch-matrix module,
represented here by open and closed red circles, can be programmed to be
open or closed. As shown here, oscillators 1 and 3 would be negatively
coupled.

represent the dimensionalized time and driving frequency. Finally,
7.= R.C w,, and B,,,,, is either zero (no connection between that node
pair) or 1 when the pair is negatively coupled.

Experimental Measurements. Let us begin by examining an
antiferromagnetically coupled Mobius ladder graph for N=6.
The idea is to minimize the Ising Hamiltonian, which means
finding the spin configuration {s; = £1} that yields the minimum
energy for Ep,, = —-13, jijsisj- Solving the Max 3-regular cut
problem on an unweighted graph is trivially formulated as
minimizing the Ising Hamiltonian by assigning J;=—1 to
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Fig. 3 Experimental evolution to unique ground state. a The coupling
matrix for N =6 Mabius-ladder graph, where black (white) squares
represent negative (zero) coupling. b The time evolution of the system'’s
energy, settling at the ground-state energy of E= —9 after around

50 subharmonic periods. ¢ the N =6 circuit response—time is plotted on
the horizontal axis, node number vertically, and the voltage response is
depicted in gray-scale. d The voltage profile encoding the ground state at
particular instant of time, depicted as the red, dashed line in (c).

connecting edges. This coupling network is shown schematically
in Fig. 3a, where black (white) squares represent negative (zero)
coupling between that pair of nodes. It is straightforward to see
that this network that has a unique lowest-energy solution (up to
a minus sign) of [1, —1, 1, —1, 1, —1]. When we drive the lattice
with this coupling network at f=380 kHz and V;=4V, the
system is driven to that lowest energy (E = —9), as seen in Fig. 3b,
and we get the voltage response depicted in gray-scale in Fig. 3c.
Some oscillators manage to transition to subharmonic resonance
somewhat more quickly than others due to small spatial inho-
mogeneities, given that the subharmonic resonance is itself a
nonlinear threshold process. We see, however, that after about
280 ps, or 50 subharmonic periods, the final alternating pattern
firmly establishes itself. A time snapshot of the voltage profile
across all six nodes—at a time indicated by the red dotted line in
panel b—is shown in Fig. 3d. It is evident that the correct solution
is encoded in that voltage profile. It should be mentioned that we
computed the configurational energy from experimental data as
outlined in the “Methods” section.

Note that for this network, there is no frustration, the
optimization state is unique, and the electrical circuitry “finds”
this state quickly and with complete reliability. This is true for
any network that admits a single optimal solution without
frustration. In such cases (ie., for Mobius graphs when N/2 is
odd), the circuit was found to perform with perfect accuracy. To
demonstrate practical use for computing, however, the system
also has to find solutions for the larger class of networks with
frustration. In the frustrated ground state, some spins would have
to be aligned in spite of being coupled antiferromagnetically. This
would happen if N/2 is even in Mébius ladder graphs.

Let us now examine the N=8 Mobius ladder, depicted in
Fig. 4a. The experimental results for this network are displayed in
Fig. 4b-d. Panel b shows the energy evolution of the state, as

6 310 (b)
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Fig. 4 Experimental evolution to degenerate ground state. a The coupling
matrix for N = 8 Mobius-ladder graph. b The time evolution of the system'’s
energy, settling at the ground-state energy of E = —8 after around

130 subharmonic periods; interestingly the system arrives there non-
monotonically. ¢ the circuit response encoding the solution of lowest
energy, depicted as the temporal voltage snapshot in (d).

computed from Eq. (9). The energy does eventually reach the
lowest possible value for this network (after about 130 sub-
harmonic periods), but it does not reach it monotonically. Panels
¢ and d reveal that the oscillator final response pattern encodes
the state [1, 1, —1, 1, —1, —1, 1, —1], which is one of the
degenerate ground states with an energy of E = —8. Note that this
network does exhibit frustration—for instance, nodes 0 and 1 are
negatively coupled, but this optimal state has those same two
nodes oscillate in synchrony.

Figure 5 relates to a different 3-regular graph—comparing
Figs. 4a and 5a reveals the coupling modifications. The raw data is
shown (in the manner of previous figures) in panels ¢ and d,
which depict the initial and final time-interval responses.
Figure 5b computes the configurational energy, according to
Eq. (9) (in the “Methods” section) as before, at each period of
oscillation. It is evident that after around 50 subharmonic periods
(or about 250 ps), the electronic system has settled into the final
state of the minimum energy, E = —8. Panels b-d also illustrate
that in the evolution towards the final state, certain parts of the
eventual state emerge much earlier than others. In this example,
nodes 0 and 1 come into synchrony early, at around 70 ps,
whereas nodes 3 and 4 do not snap into an anti-synchronous
response until late, between 200 and 300 ps. This is illustrated in
panel f, which plots the voltage profiles of nodes 3 and 4 (red and
blue trace, respectively).

As two final examples of 3-regular graphs, consider Fig. 6a, c.
The driver frequency is again 400 kHz, the driver amplitude is
gradually raised until a subharmonic pattern first emerges, and
the steady-state circuit responses are shown in Fig. 6b, d,
respectively. Both states encoded here in the voltage pattern
match one of the optimized solutions for these graphs. For the
two graphs they are, respectively, [1, 1, —1,1, —1, —1, 1, —1] and
(1,1, —1, 1, 1, —1, —1, —1], both of which yield an energy of
E = —8 for their respective networks.

It should be emphasized that these ground-state solutions in
these 3-regular graphs compete with other patterns of fairly low
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Fig. 5 Introducing additional network frustration. a Another 3-regular graph of N=28. b Energy evolution of the network; we reach a ground state of
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Fig. 6 Experimental evolution in two more frustrated random graphs. a A
modified 3-regular graph, depicted in (a); b displays the steady-state circuit
response. ¢ Another 3-regular graph with steady-state response shown in
(d). Both examples yield their respective ground states of energy E= —8.
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energies, and such patterns can also emerge at or near the driver-
amplitude threshold. In fact, when the driver is turned off and
then on again, the same pattern does not always reappear even in
the absence of changes to the driving conditions. A detailed
statistical analysis has not been attempted yet but would clearly be
an interesting topic for further study.

Furthermore, in order to attain the ground states, in some cases
it proved necessary to randomly permute the inductors for the
eight oscillators. The measured inductance values for all inductors
agreed to within 0.25%, but even that low level of spatial “noise”
in some instances proved sufficient to prevent the evolution to
one of the correct ground states; here a mere rearranging of that
noise would allow such states to manifest. In effect, our
experimental results suggested the relevance of introducing some
inductor noise to move the system out of local minima and
nudging it towards the global minimum.

Numerical simulations. We now turn to numerical simulations
of this system described by Eq. (1). Such simulations add three
important facets to the picture: (i) they can, in principle, be used
to map out more systematically the role of noise, initial condi-
tions, and driving parameters, (ii) they allow us to more easily
perform a statistical test, evaluating the efficiency of this com-
putational scheme, and (iii) they allow an investigation of larger
systems than can be currently implemented experimentally.
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Fig. 7 Numerical Simulations. Simulation results corresponding to the experimental setup of Fig. 5. a 3-regular graph of N =8 coupling matrix, b energy
evolution of the network; we reach an approximate ground state of energy E ~ —8 after around 20 subharmonic periods. ¢, d Early and late circuit response,
respectively. e, f Early and late time evolution of the voltage of the 8 oscillators starting from very small (~10=3 V) random initial conditions. The different
colors represent different oscillators (4 in purple, 5 in green, 6 in light blue, 7 in maroon, and 8 in yellow). The time unit used is the driving period T4. The

driving parameters used read wy=1.26wq and Vy4=3.1V.

Our aim in this first proof-of-principle work is to reproduce in
the simulations some of the experimental results shown
previously. The numerical integration of Eq. (1) leads quickly
to the correct ground state for networks without frustration. For
instance, in the antiferromagnetically coupled ring with N=38,
this happens within roughly 10 subharmonic periods, or around
50 ps. This time is shorter than what we see in Fig. 3, but with
higher driving amplitudes the experimental time can be reduced
to align more closely with the simulations.

More importantly, Fig. 7 shows that the simulations perform
well on the 3-regular graphs from before, depicted again in Fig. 7a.

It is clear that the simulations manage to find one correct
ground state of energy E~ —8 within roughly 20 subharmonic
periods (Fig. 7b). Figure 7c, d shows the oscillation pattern of all
eight oscillators at an early time and at long times, respectively.
The corresponding voltage traces of the oscillators are displayed
in the lower two panels, e and f. The same qualitative picture is

observed for different initializations of the system. It is interesting
to also note how the system overcomes metastable dynamics (i.e.,
between 10 and 20 subharmonic periods) to reach the desired
lowest energy minimum. Comparing the numerical findings to
the experimental results (Fig. 5), we see qualitative agreement in
the final state and how it emerges via the establishment of the
subharmonic response. For instance, in both experiment and
simulation, we observe that a certain subset of oscillators moves
into the subharmonic regime quickly, whereas others take
significantly longer to snap into place. Furthermore, we find
both experimentally and numerically that the final oscillator
amplitudes are not always equal, and those oscillators that are
lower in amplitude have not completely suppressed their alternate
peaks and therefore exhibit a larger Fourier component at
the driver frequency (Fig. 7f). The same phenomenon is apparent
in Fig. 6, for instance, and indicates some limitations in the
analogy of the electrical circuits, explored here, with Ising
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columns depict the corresponding circuit response at late times.

machines. Indeed, our oscillators are not “true spins” but rather
are able to feature a more complex subharmonic response in their
continuous time dependence. One way to overcome this issue of
the heterogeneity of the oscillators’ amplitudes is to introduce
feedback that drives all amplitudes to the same occupation®l.

The one quantitative difference that we consistently observe is
that in the simulations the final state can be obtained more quickly
than in the experiments. One reason for the longer times in the
experimental system could be the presence of a certain level of
inhomogeneity between the oscillators. Furthermore, we did not
incorporate temporal noise into the simulations. Another factor
could be that varactor-diode dissipation is not precisely captured in
the model. Nonetheless, it is evident that the key features of the
experimental results are correctly reproduced in the numerics.

To explore the role of the driver (through the variation of its
parameters) in greater detail, Fig. 8a shows the energy of the
eventual state as a function of the two driving parameters—
frequency w, (x-axis) and amplitude V; (y-axis). Evidently, we
can distinguish between three qualitatively different regions. The
dark blue region (I) corresponds to eventual states with an energy
close to the ground-state energy (E = —8) of the network in Fig. 4.

The oscillator response pattern (Fig. 8b, first row) is very close to
one of the degenerate ground states, i.e,, the [1, 1, —1, 1, —1, —1,
1, —1], as expected. In this region, the variation in the energy
values, originates mainly from the aforementioned discrepancies
on the oscillator amplitudes.

The situation is quite different in the green-blue region (II),
appearing for smaller driving amplitudes and larger driving
frequencies. These parameters lead to a steady state with an energy
E =~ —54, according to Eq.(9) in the Methods section, in which a
subset of oscillators (here 2) performs smaller amplitude oscillations
with the driving frequency, while the rest performs subharmonic
oscillations (Fig. 8b, second row). The subharmonic oscillations are
completely lost in the yellow regions of Fig. 8a. Note that this region
includes apart from the small-frequency and small-amplitude region
(where the subharmonic resonance is expected to be suppressed),
also the high-frequency region with w;>1.65w, (III). For these
parameter values the oscillators oscillate in phase, with the driving
frequency w, (Fig. 8b, third row), and thus lose the desirable analogy
to Ising systems.

In terms of the optimal driving parameters, the experiments
also show that the optimal operating regime frequency is near the

COMMUNICATIONS PHYSICS| (2022)5:333 | https://doi.org/10.1038/s42005-022-01111-x | www.nature.com/commsphys 7


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01111-x

lower edge of the subharmonic resonance curve, and as
the frequency increases the ground state is no longer reachable,
similar to what is indicated by the region of point II in Fig. 8. One
difference is that in the experiment, the driver amplitude cannot
be increased indefinitely. In fact, experimentally, it is advanta-
geous to stay near the lower amplitude-threshold for subharmo-
nic resonance. At higher amplitudes, other patterns— likely
driven by inhomogeneities—become dominant. While simulation
and experiment paint the same qualitative picture, differences in
the details will likely become smaller with further fine-tuning of
diode characteristics, especially concerning resistive dissipation.
Nonetheless, it is important to stress that both experiments and
current numerical simulations reach an optimal solution for
3-regular graphs, and they thus demonstrate the clear promise of
this network of subharmonic LC-resonators as a purely passive
unconventional computing architecture.

We now explore the numerical simulations for larger network
sizes. Figure 9 shows results similar to Fig. 8a, but with N successively
doubled, to N= 16 in panel a, to N=32 in panel b, and finally to
N =64 in panel c. The color indicates the final energy reached for
any given driving configuration. We notice that while the overall
phase boundaries seem independent of graph size, the minimum
energy state is reached less frequently for larger sizes. However, the
region indicated by the dashed box near the lower amplitude
threshold is seen to be most robust in returning the lowest energy.

In order to investigate the computational performance as a
function of system size further, we now choose a driving
condition consistent with the red dashed box in Fig. 9 and
repeat the simulation 1000 times to perform a statistical analysis.
The results are displayed in Fig. 10. The top panel, Fig. 10a,
depicts difference between the average and minimum energies.
Note the small residual difference in energy between the attained
minimum and the theoretical minimum due to oscillator phases
not perfectly mapping to 0 or m—see also Eq. (9). In Fig. 10b we
compute the standard deviation in energies, and in panel c, the
probability of reaching the energy minimum. In all three panels,
we observe that up to N=40, there is no appreciable size
dependence and the computational success is near 100%. For
larger networks, this success probability then begins to decrease
monotonically. It should be noted that we did not attempt any
annealing strategies for coaxing the system out of local minima,
the use of which would likely increase the success probabilities.

Discussion

In this study, a concrete experimental realization of a nonlinear
electrical oscillator circuit is presented, operating under external
drive in the regime of subharmonic resonance and allowing for a
controlled selection of couplings, so as to realize different types of
3-regular graphs for small number of nodes systems, such as
N=6 and N=38 (the case of higher N values was examined
numerically). We have illustrated a concrete protocol so as to
interpret this nonlinear coupled dynamical system as an effective
spin-lattice and have shown that in such an interpretation, it is
possible to reach the ground state energy, both in the case of
unique minimizers and also in the presence of frustration. The
role of noise in facilitating the departure from local minima and
reaching the global minimum has been experimentally discussed.
Importantly, the understanding of the RLC-characteristics of the
relevant oscillator elements can, in principle, enable a Kirchhoff-
law based theoretical model of the system that is found to be in
very good qualitative agreement with the experimental observa-
tions. While here we have emphasized a proof-of-principle rea-
lization of the relevant setting, it is clear that the theoretical
analysis enables a scaling of the system to higher numbers of
nodes and, as shown herein, the consideration of both the

(a) N =16
30

20
Va

wq /wo

Fig. 9 Visualizing computing efficiency's dependence on network size.
Dependence of the network’s final energy on the driving frequency wy and
the driving amplitude V4 for Mobius-ladder networks of increasing sizes:
a N=16 with E™ = —20, b N=32 with £%) = —44 and ¢ N = 64 with
Ei:,’,: = —92. The dashed red box marks a region of the parameter space
which appears to be most robust with respect to the increment of the

network size.

advantages, but also the limitations of the subharmonic oscillator
response in acting as an effective spin.

As indicated also above, this experimental realization provides
a useful proof-of-principle, but also paves the way towards future
efforts and associated questions. Clearly, issues related to scal-
ability of considerations to large N, aspects related to the added
wealth of phenomenology of the electrical oscillators (in com-
parison to simple spin variables) and its influence on the observed
dynamics, as well as the role of noise and ensembles of realiza-
tions (and corresponding averaging) are among the many
worthwhile avenues for further exploration. One can imagine, for
instance, a large-scale implementation of this scheme that utilizes
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Fig. 10 Scaling to larger network sizes. a Dependence of the deviation AE
of the final mean energy <E> (averaged over 1000 realizations) from the
theoretical ground state energy Em as a function of N for Mébius-ladder
networks. The red line marks the difference between the minimum energy
E..i reached in simulations and the theoretical one. b Standard deviation, o,
of the final network energy after 1000 realizations as a function of the

network size N. ¢ Probability to reach the ground state network energy E i

in 1000 realizations for increasing network size N.

on-chip integration of the electronic circuits and coupling logic,
especially in higher-frequency domains where inductive elements
become less bulky. Such studies are currently in progress and will
be reported in future publications.

It should also be noted that, while we numerically investigated
Mobius graphs of larger sizes, these graphs have ground states that
correspond to a principal eigenvector of the coupling matrix, which
makes these problems somewhat simpler. For general 3-regular
random graphs the optimality simplicity criterion will not hold.
However, a suitably chosen annealing schedule of parameters would
bring about a solution there as well, but it would have to be problem
specific. Finding such schedules is an interesting future direction.

Methods

The circuit equations. Let us think of the left oscillator in Fig. 1 as oscillator # and
the right one as oscillator m. Let us first consider the Kirchhoff loop rule on a “bowtie-
shaped” path; we start with the circuit point in Fig. 1 at the bottom of the left inductor,
move up across the inductor, go diagonally down (and right) across resistor R.(—), up
the right inductor, and finally diagonally down (and left) across R.(—). For this closed
path we can write the loop rule as, V,, — R/, + V., — RJyn =0, where J,,,,, is the
current through the resistor connecting the top of oscillator # to the bottom of
oscillator m, and R, = R(—). This implies that,

Vit Vi = R0 + Jn); @

where we are not assuming the latter two currents to be the same. Let is now consider
another Kirchhoff loop, this time starting at the left-bottom corner of Fig. 1, moving
up across the signal generator, down across the left capacitor, C;, down further across
the parallel combination of diode and inductor, and finally down across the bottom
capacitor, C;. Here we can write,
V,—V

¢

—V,-V, =0 ?3)

Here the second and forth terms on the left side of Eq. (3) refer to the voltage
drops across the top and bottom driving capacitors. We also know that,

oo, 0, e O
g TP g T
Taking the time derivative of Eq. (3) and substituting Eq. (4), we get
d 1
E(Vd_vn)_c_d(l+ +1). (5)

Let us now consider these two currents. I, is the current delivered to the nth
oscillator via the top capacitor, and I_ the current flowing back to the signal
generator from the nth node. Where does this current, I, flow next? Part of it goes
through the parallel combination of diode and inductor, and part of it becomes J,,.
Now we examine the diode more closely. It can be effectively modeled as a parallel
arrangement of a nonlinear resistor with a certain current-voltage relationship,
Ip(V), a nonlinear capacitor C(V) and a dissipation resistor R;. These three will be
specified in greater detail later. At present, we can therefore express I as,

av, v,
——+Y
Tt ©

I, = I, +C(V)

where Y represents the current through the inductor. The minus sign is added to the
first term because the diodes are oriented up in the forward direction in the circuit. It
is evident that I is the same as I, except that the last term must be replaced by J,,,,..
Substituting Eq. (6) and its equivalent into Eq. (5), and also using Eq. (2), we arrive at:

o] dv, _ av,
[1+2 L }Wfd—;—ﬁv,ﬁ
El(V) =Y, — gV, +V,) @
dy, Vv,
at — L

We can also assume a sinusoidal driving signal, V; = A sin(wt). Equation (7)
describes a pair of nodes, but it can be naturally generalized to a network by adding up
all the coupling currents, in which case the last term of the first equation in Eq. (7)
would have to sum over all connected nodes m. We now non-dimensionalize these
governing equations by introducing w, = 1/,/LC,; and 7= wyt, as well as v, =V, /A
and Q = w/w,. This then leads to Eq. (1).

Lastly, let us cite the functional forms for C(V) and Ip(V) that were empirically
obtained in ref. 0.

Ip(V) = I(exp(—pV) — 1),
with =388 V-1 and [, =125x 10714 A.

C,+C,(V)+C(V')}? VsV,
o) = , + C (V) + C(V') i .
Coe™V ifvV>v.

Here, V' = (V —V,), C_0 = 788 pF, a=0.456 V-1, C, = C, exp(—aV,),
C,,=—aC,, C=100nF/V? and V.= —0.28 V.

Configurational energy. In the context of Ising model, the energy of a N-particle
spin configuration {S}, also known as the state of the system, is given by:

1N N
E=—-% ¥ ]SS ®)
2 n=1m=1

In casting this coupled electrical resonator system in the form of the Ising
problem, we note that there are only two stable states for our subharmonic
resonators (with responses at even or odd periods of the driver), as explained
previously. These are associated with spin-up and spin-down. However, transient
resonator behavior can be described by superpositions of these. We associate these
superpositions with angles that differ from 0 and 7; for instance, a state that is an
equal superposition of the even and odd states would be reasonably associated with
an angle of 71/2. Thus, we keep track of each oscillator’s response both at even and
odd periods of the driver, A and B respectively, and from the ratio of these we
compute an angle, 6, (f) = 2 arctan(A/B) at each measurement time, ¢. The energy
formula then takes the form,

N

% 5, c0x0, ~6,). ©

1
E=—-
2n=1m

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.

Code availability
The Matlab code used for the numerical simulations in this work is available from the
corresponding author on reasonable request.
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