Two Capstone Projects

9.1 The Gravitational “Slingshot”

In the previous chapters of this book you have gone from investigat-
ing the simple motions of an object with constant velocity to explor-
ing the physics of a comet about the Sun. While these phenomena
are “real life”, we want to end with a consideration and discussion of
a truly “Space Age” phenomenon that is used regularly in sending
space probes to the outer solar system — gravitational assist, or
the “slingshot” maneuver.

The outer planets — Jupiter, Saturn, Uranus, and Neptune - as well
as the objects in the Kuiper Belt - including Pluto, Makemake, and
2014 MUgg — are extremely far away. Jupiter is just over 5 astro-
nomical units! away from the Sun, Neptune is 30 a.u. away from
the Sun, and Pluto is 40 a.u. away from the Sun. Traveling to any of
these objects will take several years to get there.

But how to get there? Traveling directly away from the Sun to ar-
rive at a distant planet would take an extraordinary amount of fuel
to travel — and that extra fuel means more mass, and the more mass,
the more fuel needed. It would be extremely costly, and at this writ-
ing we do not have the technology to develop rockets to transport
a space probe those distances. The Hohmann orbit (least energy
method) saves on fuel, but takes quite a while to complete the jour-
ney.

Gravitational assist allows a space probe to take some of the energy
from a nearby planet and use it for itself. The energy is “free”!

1 An astronomical unit is the average distance of the Earth to the Sun. It is equal to 1.50x 108
kilometers.
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9.1.1 The Physics

The slingshot maneuver involves a planet and a space probe. Both
objects have a velocity (therefore, both a speed and a direction).
When the probe nears the planet and is appreciably affected by the
planet’s gravity, it accelerates (both in speed and direction). The
interaction is a “collision”, but generally nothing collides. Further-
more, the collision is elastic, so therefore there is no loss of energy
(and, of course, no change of total momentum) in the planet-probe
system.

So, if the kinetic energy of the probe increases, then the kinetic en-
ergy of the planet decreases. The planet slows down! However, the
amount of decrease of kinetic energy is negligible to the planet, be-
cause the mass of a planet is huge compared to the mass of a space
probe. For example, the mass of Uranus or Neptune is approximately
1026 kg, compared to the mass of a space probe, which is typically
on the order of 10% kg.

In the rest frame of the Sun, the Sun “sees” the planet moving with
initial velocity U;. The space probe is moving with initial velocity
v;. The two objects are not necessarily going to meet head-on; that
would certainly result in the loss of the spacecraft. Instead, their
velocity vectors are separated by a distance b, called the impact
parameter. If b < the radius of the planet R, then there would
be a head-on collision.

Consider a planet and a space probe. In the Sun’s frame of reference,
the probe has velocity ¥ and the planet has velocity U (see Figure
9.1). Therefore the probe’s kinetic energy is %mv? In the planet’s
frame of reference, the planet sees the probe approach with speed
v+ U. As it gets closer, the speed of the probe increases, and after
the encounter, the probe’s speed decreases until it appears to the
planet to have a speed v + U again, as shown in Figure 9.2. (We are
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Figure 9.1: Space Probe Approaching Planet
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v+2U

Figure 9.2: Space Probe After Experiencing Gravitational Assist
From Planet

assuming an ideal encounter that causes the probe to make a 180°
change of direction). Therefore, in the Sun’s frame of reference, it
appears as if the probe has speed v + 2U.

In the Sun’s frame of reference, then, the kinetic energy of the probe
is 2m(v + 2U)2. The increase of energy to the probe is 2mU (v+U).
(By the same token, because the energy is conserved in this elastic
collision, the planet’s kinetic energy goes down by the same amount,
but the change is negligible for the planet).

Several probes to the outer Solar System have used gravitational
assist. They include the Cassini mission to Saturn (see Figure 9.3),
the New Horizons mission to Pluto and 2014 MUgg, and the famous
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Figure 9.3: Trajectory of the Cassini Mission to Saturn (source:
NASA)

probes Voyager 1 and 2, which are now in interstellar space.’

9.1.2 The Code

In Figure 9.4 the kinetic energies of the probe and the planet are
calculated (e.g., in line 11) as %, which is the same as %va. In line
27, the gravitational force is calculated, and lines 34 and 35 update
the planet’s and the probe’s positions at each instant.

2Voyager 1, launched in 1977, is now almost 150 a.u. from the Sun and is the farthest human-
made object in existence.
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1 GlowScript 2.8 VPythen
2
3 scene.range=2e9
4
5 G=6.Te-11
6
7 planet = sphere(pos=vector(2e8,4e8,8), radius=5e7, color=color.red,
8 make_trail=True, interval=1@)
9 planet.mass = 1e26
1@ planet.p = vector(-1.5e3, @, @) * planet.mass
11 planet.K = mag2(planet.p)/(2*planet.mass)
12
13 probe = sphere{pos=vector{-2.8e93,5.2e8,8), radius=lel, color=color.yellow,
14 make_trail=True, interval=1@)
15 probe.mass = led
16 probe.p = vector(5e3, @, @) * probe.mass
17 probe.K = mag2(probe.p)/(2#*probe.mass)
18 print("Initial KE of Probe:", probe.K, ". Initial KE of Planet", planet.K}
19
20 dt = 2e2
21 r = planet.pos - probe.pos
22 re=r
23
24 while mag({r)<=mag(ré):
25 rate(308)
26 r = planet.pos - probe.pos
27 F =G * planet.mass * probe.mass * r.hat / mag2(r)
28
29 planet.p = planet.p - Fxdt
30 probe.p = probe.p + Fxdt
31 probe.K = mag2(probe.p)/(2%probe_mass)
32 #print(satellite.K)
33
34 planet.pos = planet.pos + (planet.p/planet.mass) * dt
a5 probe.pos = probe.pos + (probe.p/probe.mass) * dt
36 print("Final KE of Probe:", probe.K, ". Final KE of Planet", planet.K)

Figure 9.4: Sample Code for Gravitational Assist
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9.1.3 Exercises

1. + Run this program to make sure it works. Describe what
you see.

« Modify the code to incorporate an impact parameter, b.

« What happens when you change the impact parameter,
to make it larger or smaller?

« What happens when you change the velocities of
the probe or the planet? In particular, what happens
to the speed of the probe when the planet’s velocity is 0?

« Similarly, what happens when the planet’s velocity
changes sign? In that scenario, the probe and the planet
are initially moving in the same general direction, with
the probe catching up to the planet.

2. « Now that you have explored the b-dependence a bit,
let’s make this a bit more precise. Choose five different
impact parameters and keep track of the angle of
deflection of the probe for each. Enter the values for
b and deflection angle into a spreadsheet and plot the
relationship between those variables. If the graph is not
clear, go back and add a few more b-values into your
table.

« For the same b-values that appear in your list, write
down the the change in kinetic energy of the probe, ex-
pressed as a fraction of the initial kinetic energy, based
on the code output. Then enter these values for frac-
tional change in kinetic energy into your spreadsheet
and plot its dependence on impact parameter.
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Based on this plot, if we want a large increase in kinetic
energy for the probe, what do we have to do?

9.2 Asteroid near a Binary Star System -
Chaotic orbits, or the “Three-Body
Problem”

In the previous chapters you have gone from investigating the sim-
ple motions of an object with constant velocity to exploring the
physics of a comet about the Sun. In all of these examples, the
motion did not exhibit what physicists call deterministic chaos. In
the gravitational problem of two bodies attracting one another, solu-
tions can, in fact, be found by pencil and paper. Interestingly, when
we add a third body all bets are off. The orbits can no longer be pre-
dicted with a mathematical formula, but worse than that, the orbits
exhibit what is known as extreme sensitivity to initial conditions - a
hallmark of chaos.

9.2.1 Modifying a previous code

To keep things as simple as possible, let us revisit an earlier problem
- the binary-star system in Section 7.1. The question we want to
ask now is: if we introduced a small asteroid into this system how
would it move under the influence of the gravitational attraction to
each star? To make the problem even simpler, we assume that the
asteroid is so small that it does not affect the motion of the two stars.
Since it is 8 orders of magnitude (or 100 million times) less massive
than the stars, this is a very good approximation. In that case, the
mass of the asteroid really doesn’t enter into the picture. All we need
to do is to calculate the acceleration experienced by the asteroid at
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every time step, and this is given by the universal law of gravitation
as,

S mi ma
ad=—-G—1 — G—Tro, (9.1)
1 3

where 77 is the vector from first star to the asteroid, and 5 is the
vector from the second star to the asteroid, and the m’s in the nu-
merator are the star masses.

Once we have computed the accelerations, we can update the aster-
oid velocity, and then we use the updated velocity to find the next
position of the asteroid, in a recursive procedure outlined in Chapter
6.

So here is the idea. Let us start with the code in Figure 7.1 which
will take care of the motion of the two stars. To give us a little more
“room”, let’s start these two stars out along the x-axis at -5e11 and
+5e11 (instead of £2el1. Also, to keep the center of mass of the
system fixed, let’s adjust the y-component of the small start from
-1le4 to -9e3. Finally, turn off the trails on these two stars, and delete
all calculations of the center of mass (we won’t need that anymore).
This takes care of the binary-star system.

Now let’s introduce the asteroid. Add a line defining this object
near the top that defines the asteroid as a sphere. Give it an initial
positionof vector(1.50e12, 0, 0). Then define a asteroid ve-
locity as one of its attribute as

asteroid.v = vector(0,-7.5e3,0).

Now that we have defined the asteroid and its initial position and
velocity, we need to turn our attention to its motion. At the end of
the while-loop, add two lines that compute the vectors 7] and 7%,
appearing in Equation 9.1. Each of them are just the differences in
the position vectors of the asteroid and the respective star. With
these two vectors in hand, we can compute the asteroid’s accelera-
tion, asteroid. a, using Equation 9.1 directly.
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if (mag(ri)<2e9 or mag(r2)<2k9):
print("collision")
break

elif (mag(r1)<8e9 or mag(r2)<8e9):
dt = 4e3
print("close call")

elif (mag(ri1)<8eld or mag(r2)<8eld)
dt = 2Ze4d

else: dt = 1eb

Figure 9.5: A rudimentary adaptive time step

This program would now run, but it is a good idea to add two more
things. The first one is straightforward. If the asteroid comes too
close it burns up in the stellar atmosphere. So we should include an
if-statement to terminate the program if the asteroid comes within,
say, 2e9 (or 2 million kilometers) of either star.

The second refinement has to do with the computational integration
technique itself. Right now we are using a simple Euler-Cromer al-
gorithm, as explained before. But you may have noticed that when
the asteroid gets really close to either star, the dynamics is no longer
smooth. The asteroid picks up so much speed that it covers a signifi-
cant amount of space between successive time steps. In other words,
the computational time interval, dt, seems to be too large, and the
result is no longer accurate.

In a more advanced course, you would now probably be learning
about the Runge-Kutta algorithm with an adaptive time-step. But
that would go beyond the scope of this course. So, instead, let’s im-
plement a most rudimentary version of an adaptive time-step. The
basic idea is that when the asteroid comes within a certain radius of
either star, then we need to compute more finely by reducing the dt.

Figure 9.5 shows one simple way we can accomplish this. Keep in
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mind, however, that this is not a highly accurate algorithm either,
and that there are much more sophisticated ways to do this out there.
Nonetheless, it improves on our previous method.

9.2.2 Exercises

Now that you have completed the coding, let us have fun and run
the program with a few initial conditions. You should get output
like the following:

One thing that is immediately clear is that the orbits are highly ir-
regular and non-periodic. Furthermore, what you can do is to vary
the initial position of the asteroid slightly. For instance, you can
check the orbits that result from a initial x-coordinate of 1.49, 1.50,
and 1.51 x 10'2 meters.

Find initial conditions that lead to the three possible long-term out-
comes for the asteroid: (a) it crashes into one of the stars, (b) it



74 CHAPTER 9 Two CAPSTONE PROJECTS

escapes the binary-star system and drifts further and further into
space, and (c) it settles into a semi-stable orbit around one of the
stars.
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